• Title/Summary/Keyword: 탄산이온

Search Result 299, Processing Time 0.023 seconds

Acid/Base Buffer Capacity of Clays (점토의 산/염기 완충능)

  • 김건하;김길홍
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.97-103
    • /
    • 2000
  • 지반내 중금속의 저류와 이동에 대한 가장 중요한 인자는 토양 간극수의 pH이다. 점토의 완충능을 kaolinite, hectorite, attapulgite, Na-bentonite와 같은 4가지 점토에 대하여 연구하였다. 완충능의 크기는 hectoriteattapulgite>kaolinite의 순으로 나타났다. 완충능의 크기는 지반내 탄산염 함량과 양이온 교환능력이 완충능의 크기에 가장 영향을 미치며 유기물 함량과 비표면적의 영향은 적었다. 토양의 완충능을 모델링하기 위하여 수소 이온과 토양표면의 화학반응 기간의 화학반응을 정전흡착 모델을 이용하여 모델링하였다. 또한 탄산염 함량과 양이온 교환능력을 함수로 하는 회귀식을 제안하였다. 모델 검증을 위하혀 모델 예측치와 실험치를 비교하였는데 정전 흡착모델을 이용한 예측치가 실험치와 근사한값을 나타냈다.

  • PDF

Properties analysis of environment friendly calcareous deposit films electrodeposited at various temperature conditions in natural seawater (천연해수 중 온도 변화에 따라 전착한 환경친화적인 석회질 피막의 특성 분석)

  • Lee, Chan-Sik;Kang, Jun;Lee, Myeong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.779-785
    • /
    • 2015
  • Cathodic protection is recognized as the most cost-effective and technically appropriate corrosion prevention method for the submerged zone of offshore structures, ships, and deep-sea facilities. When cathodic protection is applied, the cathodic currents cause dissolved oxygen reduction, generating hydroxyl ions near the polarized surface that increase the interfacial pH and result in enhanced carbonate ion concentration and precipitation of an inorganic layer whose principal component is calcium carbonate. Depending on the potential, magnesium hydroxide can also precipitate. This mixed deposit is generally called "calcareous deposit." This layer functions as a barrier against the corrosive environment, leading to a decrease in current demand. Hence, the importance of calcareous deposits for the effective, efficient operation of marine cathodic protection systems is recognized by engineers and scientists concerned with cathodic protection in submerged marine environments. Calcareous deposit formation on a marine structure depends on the potential, current, pH, temperature, pressure, sea-water chemistry, flow, and time; deposit quality is significantly influenced by these factors. This study determines how calcareous deposits form in sea water, and assesses the interrelationship of formation conditions (such as the sea water temperature and surface condition of steel), deposited structure, and properties and the effectiveness of the cathodic protection.

An experimental study on preparation of precipitated calcium carbonate using Ca component dissolution characteristics and liquid carbonation by the Industrial byproducts (산업부산물의 Ca 성분 용출 특성 및 액상탄산화 반응을 이용한 침강성 탄산칼슘 제조에 관한 실험적 연구)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Shin, Jae-Ran;Choi, Chang-Sik;Hong, Bum-Ui;Kang, Ho Jong;Park, Byung Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.116-126
    • /
    • 2015
  • The present study utilized a shuttle mechanism of wet chemical absorption using MEA. In addition, industrial by-products containing a large amount of inorganic alkali substances were utilized for wet carbonization process. Chemical pretreatment of industrial by-products extracted calcium ions. ICP result of calcium ion was obtained up to 17,900 ppm(17.9%) by acidic substance. And also, In this work, 94% of recovery rate was obtained using wet MEA absorption process from $CO_2$ flow at the ambient condition. Through the liquid carbonation process, a sludge was fixed with rate of 0.175 mg of $CO_2$ per mg of sludge. It was found from XRD results that the structure of final product was composed of a calcite structure which is general structure of $CaCO_3$.

Synthesis of Na Compounds from Sodium Concentrated Solution Using Carbonation and Cryo-crystallization (탄산화 및 저온 결정화를 통한 나트륨 농축수로부터 나트륨 화합물 합성)

  • Lee, Seung-Woo;Chae, Soochun;Bang, Jun-Hwan
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.58-66
    • /
    • 2020
  • Carbonation (step I) and cryo-crystallization (crystallization at low temperature) (step II) were performed to synthesize Na compounds from sodium concentrated solution. In the step 1, the solubility and pH of carbon dioxide (95 wt.%) affecting carbonation could be changed by the variation of reaction temperature. The step II was performed at 2 ℃ after carbonation. The injection of carbon dioxide was carried out twice for the stable production and the saturated solubility of carbonate ions in solution. Firstly, we tried to inject CO2 for controlling the solubility of CO2 by changing the reaction temperature from 35 ℃ to 10 ℃, and the second injection was aimed at 10 ℃ for inducing nucleation of Na compound through carbonation after NaCl solution addition. In the cryo-crystallization step, the crystal growth of Na compounds could be induced by slowing the carbonation rate through reaction temperature change from 10 ℃ to 2 ℃. In this study, the effect on NaOH concentration was examined and the purity of Na compound was increased when 2M NaOH was used. In addition, the synthesized Na compounds were mostly rod-shaped and consisted of sodium carbonate or sodium carbonate with monohydrate.

광촉매를 이용한 Humic Acid광분해시 공존 물질이 광분해에 미치는 영향

  • 현경자;류성필;오윤근
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11b
    • /
    • pp.38-40
    • /
    • 2003
  • $TiO_2$로 코팅된 scoria를 이용하여 공존물질 존재시 humic acid의 광분해 연구 결과 광촉매량의 증가에 따라 제거효율이 증가하였고, 양이온을 첨가하였을 때 제거효율이 증가하였다. 탄산염이온을 첨가하였을때는 상당한 차이를 보였으며 180분 후에도 30%정도의 제거 효율을 나타냈다.

  • PDF

Synthesis of aragonite precipitated calcium carbonate by homogeneous precipitate reaction of $Ca(OH)_2\;and Na_2CO_3$ ($Ca(OH)_2\;및 \;Na_2CO_3$수용액의 균일침전 반응에 의한 아라고나이트 침강성 탄산 칼슘의 합성)

  • Park, Jin-Koo;Park, Hyun-Seo;Ahn, Ji-Whan;Kim, Hwan;Park, Charn-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.110-114
    • /
    • 2004
  • Formation behavior of aragonite precipitated calcium carbonate was investigated with changed the concentration of $Na_2CO_3$ solution and addition method which added in the $Ca(OH)_2$ slurry at $75^{\circ}C$. In this reaction, we found that $Na^+$ ions were substituted into $Ca^{2+}$ion site then disturb the growth of calcite, and while proceed the crystal growth in a certain direction and promote the formation of aragonite. Also, a decrease of reaction rate by control the concentration of $CO_3^{2-}$ ion, induce the homogeneous precipitate reaction and increase substitution ability of $Na^+$ ions, consequently it was promote the formation and growth of aragonite.

An Experimental Study on the Resistance to Penetration of Harmful Ions in Surface Coatings Material Containing Organic Corrosion inhibitor (유기계 방청제를 혼입한 표면피복재의 유해이온 침투저항에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2017
  • In general, carbonation and chlorine ions are the most harmful causes of deterioration of concrete structures. Recently, a method has been developed to control the corrosion of rebar in concrete containing chloride by impregnating a Surface coating material with a inhibitor. In this study, accelerated carbonation and differential thermogravimetric analysis (TG-DTA) and CASS tests were carried out to evaluate the characteristics of Surface coatings containing Organic Corrosion inhibitors which are excellent in corrosion inhibition and fix degradation causes $CO_2$ and $Cl^-$. As a result of the experiment, TG-DTA analysis and accelerated carbonation showed that $CO_2$ was directly reacted with amine derivative in concrete by the incorporation of Organic Corrosion inhibitor. In other words, $CO_2$ was immobilized and carbonation inhibition effect was confirmed. In addition, in the CASS test, the specimen coated with the Surface coating material containing the Organic Corrosion inhibitor with $Cl^-$ fixing property showed no corrosion until the 28th day and had excellent performance in preventing corrosion of a rebar by the chloride ion.

공기의 질과 건강

  • Choe, Tae-Seop
    • Journal of Korea Far Infrared Association
    • /
    • s.24
    • /
    • pp.32-37
    • /
    • 2005
  • 공기이온에 관한 연구는 많은 분야의 연구원 참여에 의해 폭넓게 알려져, 반세기에 이르는 번영의 역사를 쌓아 왔지만, 불가사의하게도 현재, 가장 중요한 적용분야인 보건 분야에서 위기를 맞고 있다. 20세기 초, 대기 중에 전하를 띤 입자의 존재가 관찰된 이래, 공기 이온의 성질을 문제로 한 기초적 연구가, 간단한 공기이온계측기 보급과 함께, 물리학자, 생물학자, 의학자의 협력 하에 1930년대 이후 활발히 이루어져, 공기이온의 위생적ㆍ치료적 가치에 대한 풍부한 정보를 얻을 수 있게 되었다. 어찌되었든 이온화환 공기 속에서는 생활할 수 없는 것이 확실해져, 어떤 농도의 공기이온은 사람 및 동물의 생체에 유익한 작용을 하고, 대용량 공기이온은 치료에 적용가능하지만, 농도의 여하에 관계없이, 양이온이 음이온에 비해 2~3배 우세하면, 신체의 상태를 악화시켜며, 또한 공조설비와 필터류는 모두 이온화작용을 나타내는 것도 밝혀졌다. 청정한 공기를 이온화하는 것은 산소, 탄산가스, 약용물질분자를 활성화시키지만, 오염된 공기의 이온화는 유독한 불순물의 독성을 증가시키는 점도 지적되었다.

  • PDF

Studies for CO2 Sequestration Using Cement Paste and Formation of Carbonate Minerals (시멘트 풀을 이용한 CO2 포집과 탄산염광물의 생성에 관한 연구)

  • Choi, Younghun;Hwang, Jinyeon;Lee, Hyomin;Oh, Jiho;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • Waste cement generated from recycling processes of waste concrete is a potential raw material for mineral carbonation. For the $CO_2$ sequestration utilizing waste cement, this study was conducted to obtain basic information on the aqueous carbonation methods and the characteristics of carbonate mineral formation. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. Leaching tests using two additives (NaCl and $MgCl_2$) and two aqueous carbonation experiments (direct and indirect aqueous carbonation) were conducted. The maximum leaching of $Ca^{2+}$ ion was occurred at 1.0 M NaCl and 0.5 M $MgCl_2$ solution rather than higher tested concentration. The concentration of extracted $Ca^{2+}$ ion in $MgCl_2$ solution was more than 10 times greater than in NaCl solution. Portlandite ($Ca(OH)_2$) was completely changed to carbonate minerals in the fine cement paste (< 0.15 mm) within one hour and the carbonation of CSH (calcium silicate hydrate) was also progressed by direct aqueous carbonation method. The both additives, however, were not highly effective in direct aqueous carbonation method. 100% pure calcite minerals were formed by indirect carbonation method with NaCl and $MgCl_2$ additives. pH control using alkaline solution was important for the carbonation in the leaching solution produced from $MgCl_2$ additive and carbonation rate was slow due to the effect of $Mg^{2+}$ ions in solution. The type and crystallinity of calcium carbonate mineral were affected by aqueous carbonation method and additive type.