• Title/Summary/Keyword: 탁도 제거

Search Result 250, Processing Time 0.029 seconds

Quality characteristics and antioxidant activity of Sooyeon noodles supplemented with sorghum powder (수수가루 첨가 수연소면의 품질특성과 산화방지 활성)

  • Song, Myeong Seob;Choi, Ah Young;Kim, Min Young;Lee, Yoon Jeong;Oh, Hyunah;Woo, Koan Sik;Lee, Junsoo;Jeong, Heon Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.486-491
    • /
    • 2018
  • This study investigated the qualitative characteristics of Sooyeon noodles supplemented by sorghum powder at concentrations of 10, 15, 20, and 25%. L- and b-values of Sooyeon noodles decreased while its a-value was significantly increased by the addition of sorghum powder. Additionally, sorghum powder increased the weight, volume, and water uptake of noodles. Turbidity as well as cooking loss of cooked noodles decreased significantly due to the addition of sorghum powder. Increasing concentration levels of sorghum powder resulted in an increase in the hardness of cooked noodles, which was in the range of 1,236-1,932 g, and a decrease in tension, which was in the range of 152-105 g. The same trend was observed in the dough production process. Sooyeon noodles with 25% sorghum powder yielded the highest total polyphenol content (3.668 GAE mg/g) and flavonoid content (1.893 CE mg/g). DPPH and ABTS radical scavenging activities increased linearly to 0.704 and 0.815 AA mg/g, and 0.355 and 0.935 AA mg/g. respectively.

Water Quality Variation on the Unit Operation of Water Treatment Process When CCPP Index was Controlled for Internal Corrosion of Water Pipes (수도관 내부부식방지를 위한 CCPP 조절시 정수공정내에서의 수질변화)

  • Lee, Jae-In;Kim, Do-Hwan;Lee, Ji-Hyung;Kim, Dong-Youn;Hong, Soon-Heon;Shin, Pan-Sae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.362-368
    • /
    • 2005
  • The pH, alkalinity and calcium hardness could be adjusted by $CO_2$, $Ca(OH)_2$, and $Na_2CO_3$ addition in the water treatment process for corrosion protection of the water pipes. This research was performed to investigate the effect on the variation of water quality on the unit process by addition $CO_2$, $Ca(OH)_2$, and $Na_2CO_3$ in water treatment process. Carbon dioxide and lime were added before the coagulation basin and soda ash was added after the BAC process. pH and aklainity were increased at coagulation basin then after the water qualities had sustained similiarly to BAC process. There was no effect on turbidity and DOC removal efficiency during experimental period by addition\ $CO_2$, $Ca(OH)_2$, and $Na_2CO_3$ solution was added into clear well, the last process for optimum control of CCPP and is used mainly to control pH and alkalinity. In this research, average pH, alkalinity, and calcium hardness in treated water were 8.39, 61.4 mg/L as $CaCO_3$, 59.4 mg/L as $CaCO_3$, respectively and CCPP of treated water was higher than 29.5 mg/L to BAC process water, so adjusted water was expected to prevent internal corrosion of water pipe.

Applicability Evaluation of Two-stages and Dual Media Filtration System by the Small-scale Pilot Plant (이단이층 복합여과시스템의 소규모 파일롯 플랜트 적용성 평가)

  • Woo, Dal-Sik;Song, Si-Byum;Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.857-864
    • /
    • 2009
  • This study aimed at developing the two stage and dual filtration system. It has a sand + activated carbon layer above the underdrain system and a sand layer above the middledrain system for pretreatment. When retrofitting an old filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new site. In order to extend the filtering duration, the upper layer of the filter bed consists of the rapid sand filtration with large particles which pre-treats and removes coarse particles and turbidity matters. The middle layer has biological activated carbon(BAC) and granular activated carbon(GAC) to eliminate dissolved organic matters, disinfection by-products precursors etc. The lower layer consists of the sand filtration for the post filtering mode. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in the S water treatment plant in Kyounggi-Do. The stability of turbidity was maintained below 1NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual filtration system, which is almost 2 times higher than S WTP. From analysis result of HPC along the depth of activated carbon + sand layer at 2nd stage, microorganism was mostly not detected, however, increment of HPC was shown as it becomes deeper. It indicates that growth of microorganism is occurred at activated carbon layer.

The Treatment of Domestic Wastewater by Coagulation-Crossflow Microfiltration (응집-정밀여과에 의한 도시하수의 처리)

  • Sim, Joo-Hyun;Kim, Dae-Hwan;Seo, Hyung-Joon;Chung, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.581-589
    • /
    • 2005
  • Recently, membrane processes have been replacing the conventional processes for waste water treatment to produce better quality of effluent and to meet more stringent regulations because of water shortage. However, using membrane processes for water treatment has confronted with fouling and difficulty in treating dissolved organic pollutants. In this study, membrane process equipped with crossflow microfiltration is combined with coagulation process using alum and PAC to improve permeability and treatment efficiency. The effects of coagulant dosage and optimum membrane operating conditions were investigated from measurement of permeate flow, cumulative volume, total resistance, particle size, dissolved organic pollutant, dissolved aluminium and quality of effluent. Characteristic of PAC coagulation was compared with that of alum coagulation. PAC coagulation reduced membrane fouling because of forming larger particle size and increased permeate velocity and cumulative volume. Less dissolved organic pollutants and dissolved aluminum made decreasing-rate of permeate velocity being lowered. At using $0.2\;{\mu}m$ membrane, cake filtration observed. At using $0.45\;{\mu}m$ membrane, there was floc breakage due to shear stress occurred born circulating operation. It made floc size smaller than membrane pore size, which subsequently to decrease permeate velocity and to increase total resistance. The optimum coagulation dosage was $300{\pm}50\;mg/L$ for both alum and PAC. PAC coagulation was more efficiently used with $0.2\;{\mu}m$ membrane, and the highest permeate flux was in using $0.45\;{\mu}m$membrane. The greatest efficiency of treatment was as follows; turbidity 99.8%, SS 99.9%, $BOD_5$ 94.4%, $COD_{Cr}$ 95.4%, T-N 54.3%, T-P 99.8%.

The Effects of Mixer Geometry on Hydraulic Turbulence : Computational Modeling (3-D 전산유체를 이용한 급속혼화조 형상에 따른 난류 유동장 연구)

  • Park, No-Suk;Kim, Sung-Hoon;Park, Heekyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1173-1182
    • /
    • 2000
  • The rapid mixing process has been considered as an important step in water treatment. Since the coagulant dispersion into raw water by rapid mixer can influence on the flocculation and filtration efficiency, many researchers have developed various devices and mixing methodologies. Until now, they focused attention on only coagulant dose, pH. rotating velocity and G value but overlooked the real turbulent flow and mixer geometry in rapid mixer. Therefore this paper questions the significance of turbulent flows in rapid mixer and focuses on the analysis of turbulent fluid in various mixer geometry with CFD(Computational Fluid Dynamics). The results of the jar-tests using various geometries indicate that the turbidity removal rate in a circular jar without baffle is higher than that of a circular with baffle. And the turbidity removal rate in Hudson jar is also founded to be higher than in the circular jar with baffle. The CFD simulation of velocity fields in jar demonstrates that the differences of removal rates among the various geometries are largely due to the formation of the different turbulent fluids fields with different geometries.

  • PDF

Characteristics of Particle Separation in Water Using Lab-Scale Acoustic Standing Wave (실험실 규모의 음향정재파를 이용한 수중의 입자분리 특성)

  • Ahn, Jaehwan;Kang, Sungwon;Ahn, Kwangho;Kim, I tae;Kim, Seog gu;Ahn, Hosang;Lee, Youngsup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.787-791
    • /
    • 2012
  • Characteristics of particle separation in water using labscale acoustic standing wave were studied. Acoustic standing wave is similar to either sound wave or ultrasonic, which makes a constant wave while returning to the origin by reflector. During that time, particulates dispersed in water are collected on the node of wave, where a sound pressure is zero. Acoustic standing wave transducer as of 28.0 kHz and 1.0 MHz were utilized and $6.8{\mu}m$ kaolin and $100.5{\mu}m$ redmud in average diameter were used as experimental materials in water. Once acoustic standing wave are generated in water, water temperature rises by $0.15{\sim}0.20^{\circ}C/min$ due to a sound pressure. Initial concentration of kaolin and redmud were controlled to have same as of 0.1, 0.2, 0.3, 0.4, 0.5 g/L, respectively. Removal efficiency of the turbidity in a reacting chamber after 5 minutes, when acoustic sound wave was formed in most distinct, was measured to have 18.2~56.2% for kaolin and 23.0~53.6% for redmud at 1.0 MHz. Particle separation was not observed at 28.0 kHz.

Development of Integrated Process Management System for Pump Dredge (펌프식 준설선의 통합공정관리시스템 개발)

  • Jeong, Dae-Deuk;Lee, Joong-Woo;Cho, Jeung-Eon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.146-151
    • /
    • 2002
  • Efficiency of dredging work depends on the types of equipment used, the sediments encountered, whether the work to be performed is new or for maintenance, pre and/or post hydrographic surveying and so forth. Among those, surveying accuracy which is directly determined by the control of the dredge's position and depth surveying accuracy being surveyed at the dredging point are important factors. The purpose of this study is to develop an integrated process management system for pump dredge. The system is composed of 4 sub-systems such as LADGPS for dredge positioning dredging point determination, tidal gauge and angular depth sensor for depth determination, and GIS and ENC process management. The process management system for pump dredge developed was installed on the pump dredge "EUNJIN PD-2" but is now producing work data for comparison with performance of the existing dredge. The data retrieved from the pump dredge process management system up to now shows similar result from the grab dredge management system which was developed previously. It is easy to operate, achieves good accuracy with only 45cm unevenness, reduces working perioa by 20 percint,. More precise evaluation of the system comes later after the dredging work is completed.completed.

The Aeration to Improve Manganese and Chloroform of Effluent at Sludge Thickener of the Conventional Water Treatment Plant (정수장 슬러지 폭기가 방류수 망간 및 클로로포름에 미치는 영향)

  • Choi, Ilgyung;Beak, Inho;Jeong, Chanwoo;Lee, Sungjin;Park, Jungwook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.113-118
    • /
    • 2014
  • So many nationwide drinking water treatment plants are under much difficulties by new reinforced discharged effluent standards. Generally, the sludge at thickener should be retended for a long time during usual days. Sometime, the soluble manganese and chloroform may be formed under the anaerobic condition in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. It was necessary to improve the operation conditions and process itself in order to meet water quality standard recently reinforced. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. Sludge aeration prevent particle oxidated Manganese eluting soluble de-oxidated Manganese, excrete formated Chloroform from effluent to air, and improve sludge settling through homogenized sludge particle. We aerated sludge at the conventional water treatment plant, measured Manganese and Chloroform of clarified water at upper sludge, and solid-fluid interface height of sludge in mass cylinder. As a result, contaminant's concentrations of the final effluent was much decreased : 41% of manganese, approximately 62% of chloroform and 35% of sludge volume, compared with non-aeration sludge.

Ultrafiltration for Quality Improvement of Wine (한외여과공정을 이용한 포도주의 품질개선)

  • Chung, Jae-Ho;Mok, Chul-Kyoon;Lim, Sang-Bin;Park, Young-Seo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.386-392
    • /
    • 2003
  • Physicochemical and microbiological changes of grape wine fermented and aged at 25 and $15^{\circ}C$ for 2 and 14 weeks, respectively, were investigated. Viable bacterial cell number, $3.3{\times}10^2\;CFU/mL$ at the beginning of fermentation, increased to $2.3{\times}10^6\;CFU/mL$ after 2 weeks, then decreased to $1.9{\times}10^3\;CFU/mL$ after 14 weeks. Viable yeast cell number increased from $2.8{\times}10^2\;to\;2.2{\times}10^7\;CFU/mL$ during fermentation, then decreased to $1.6{\times}10^4\;CFU/mL$ after aging. Turbidity, pH, total sugar content, reducing sugar content, and solid content of grape wine decreased during fermentation, whereas acidity and alcohol content increased to 0.64 and 8.4%, respectively. Most physicochemical properties did not change significantly during aging. When grape wine was filtered through $0.45-{\mu}m$ nitrocellulose membrane, followed by various ultrafiltration membranes with different molecular weight cut-off values, Biomax 100K membrane with $100\;L/m^2/hr$ (LMH) of initial flux was chosen for ultrafiltration process. These membrane filtration treatments resulted in complete removal of microorganisms and decreases in turbidity, reducing sugar, and solid content. Physicochemical properties of wine did not change, and no microorganisms were found during storage at $30^{\circ}C$ for 12 weeks.

Effect of Trans-Membrane Pressure on Reversible and Irreversible Fouling Formation of Ceramic Membrane (막간차압이 세라믹막의 가역막오염과 비가역막오염 형성에 미치는 영향)

  • Lee, Heewon;An, Kwangho;Choi, Juneseok;Kim, Seogku;Oh, Hyunje
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.637-643
    • /
    • 2012
  • This study was carried out to investigate how reversible and irreversible fouling were distributed in the filtration using ceramic membrane of 300 kDa pore size for secondary effluent of wastewater. It was performed by calculating fouling as numerical method for diverse TMPs and measured F-EEM and SEC for raw water, treated water and backwashed water. Water quality was also checked to know whether treated water quality was stable or not. The results showed that reversible fouling formation was increased when lower TMP was applied and it is caused by protein like organic matters having higher molecular weights. The secondary wastewater effluent had diverse molecular weight materials, especially contaminants lower than 0.5 kDa and bigger than 12 kDa. Decreasing TMP induced contaminants above 12 kDa and below 1 kDa to become reversible fouling.