• Title/Summary/Keyword: 타행 시간

Search Result 9, Processing Time 0.02 seconds

A GA-Based Algorithm for Generating a Train Speed Profile Optimizing Energy Efficiency (에너지 최적의 열차 속도 궤적 생성을 위한 GA 기반 알고리즘)

  • Kang, Moon-Ho;Han, Moon-Seob
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.878-886
    • /
    • 2009
  • This paper proposes an optimal algorithm for generating a train speed profile giving optimal energy efficiency based on GA (Genetic Algorithm) and shows its effectiveness with simulations. After simplifying the train operation mode to a maximum traction, a coasting and a maximum breaking, adjusting the coasting point to minimize the train consuming energy is the basic scheme. Satisfying the two constraints, running distance and running time between two stations, a coasting point is determined by GA with a fitness function consisting of a target running time. Simulation results have shown that multiple coasting points could exist satisfying both of the two constraints. After figuring out consumed energies according to the multiple coasting points, an optimal train speed profile with a coasting point giving the smallest consumed energy has been selected. Simulation blocks for the train performance simulation and GA have been designed with the Simulink.

High-Accuracy Coastdown Test Method by Distance-Time Measurement: II. Development of a Short Distance Method and its Evaluation (거리·시간 측정에 의한 고정도 타행시험법: II. 단거리 방법의 개발 및 시험)

  • Hur, N.G.;Ahn, I.K.;Petrushov, V.A.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 1995
  • In the companion paper of the present paper, a coast down test method to determine the resistance forces on running vehicle based on the distance-time measurement was explained along with the suggestions to improve its accuracy and testing methodology. In the present paper some of the suggestions discussed previously are implemented and actually road tested to see the applicability of the improved method(short distance method) in the field. From the results. it is shown that the short distance method which requires only 600m long proving ground road gives at least comparable results on the accuracy compared to the original S-t method which requires 2000m. It is hoped that the present method be further refiend to give more accurate results.

  • PDF

High-Accuracy Coastdown Test Method by Distance-Time Measurement: I. Theoretical Background and Discussions on Accuracy Improvements (거리·시간 측정에 의한 고정도 타행시험법 : I. 관련이론 및 정밀도 향상방법 고찰)

  • Hur, N.;Ahn, I.K.;Petrushov, V.A.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.51-61
    • /
    • 1995
  • A coast down test mothod has been used to determine the resistance forces on running vehicle due to the aerodynamic drag, rolling resistance and driveline resistance. Most of the tests, however, are based on the Velocity-Time measurements, which require a sophisticated velocity measuring device and contain much error by nature. In the present study a coast down test method based on Distance-Time measurements is introduced, which contains the original idea of Russian scientist Prof. Petrushov along with the suggestions for improvement of the accuracy.

  • PDF

Assessment of the Running Resistance of a High-speed Train Using a Coasting Test (타행 시험을 이용한 고속열차 주행저항 평가)

  • Kwon, Hyeok-Bin;Kim, Seogwon;Oh, Hyuck Keun
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.165-170
    • /
    • 2014
  • The resistance to motion of the Korean next-generation high-speed train (HEUM-430X) was assessed on the basis of 12 coasting test runs at coasting speeds up to approximately 380km/h. Two different methods, a linear regression method and a time-integral method, were employed to calculate decelerations from the time-velocity data and the time-distance data, respectively, and an equation of resistance to motion was devised from the deceleration data calculated at each time section. The effect of an improvement of the aerodynamic shape on the resistance to motion was investigated, with the results showing that the running resistance was reduced by about 15% due to these improvements. An increase of approximately 28% of the running resistance was also noted when running in a tunnel relative to running through an open field.

A Study on the Contribution of Exterior Devices to Running Resistance in High-Speed Trains (고속열차 외부장치에 의한 주행저항 기여도 연구)

  • Oh, Hyuck Keun;Kwak, Minho;Kwon, Hyeok-bin;Kim, Sang-soo;Kim, Seogwon
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.309-316
    • /
    • 2015
  • The contribution of exterior devices such as bogie fairings and pantographs to running resistance was estimated on the basis of coasting tests at up to 350 km/h with the help of the Korean Next Generation High speed train (HEMU-430X). In order to assess the reduction of air resistance by nose car's bogie fairing, coasting tests were conducted with a removable bogie fairing at various speed ranges. And, the contribution of the pantograph to air resistance was also estimated with coasting tests that include the pantograph's rising and descent modes. The linear regression method was used to examine decelerations from time-velocity data and the equation of resistance to motion is proposed from the deceleration data. From the aerodynamic term of the equation of resistance to motion, the contribution to air resistance by nose car's bogie fairing and pantograph was estimated. The results show that the air resistance was reduced by about 3.8% by the nose car's bogie fairing. And, the 3.9% increase of air resistance by the pantograph (open knee mode) has been found.

A Study on Revising Train Departure Time for Reducing Electric Power Consumption (전력소비완화를 위한 전동열차 출발시간 조정에 관한 연구)

  • Kim, Kwang-Tae;Kim, Kyung-Min;Hong, Soon-Heum
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.167-173
    • /
    • 2011
  • This paper considers the problem of revising train departure time to reduce electric power consumption of mass rapid transit (MRT) railways. The motion of a train running between stations is divided into three phases: traction, coasting, and deceleration phases. The traction phase requires high electric power to operate MRT railways. In the coasting phase, the train moves stably by consuming little or no power. The deceleration phase is a braking mode and produces some electric power called regenerated brake power owing to inertia force for the train generated In the traction and coasting phases. The regenerative energy can be used by other accelerating trains within a specific range from the train and thereby the power consumptions of train can be reduced. We developed a mixed integer programming model to solve the problem. To validate the suggested model, a computational experiment was conducted using real data from Korea Metropolitan Subway.

A Study on Calculation of Engine Torque for Automotive (자동차의 엔진 토오크 산출에 대한 연구)

  • 나완용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.211-219
    • /
    • 2003
  • The main study experiments to obtain engine torque of the vehicle during performance test of the recent automobile. Torque was measured through the engine dynamometer to produces engine torque of the vehicle but the research method calculated engine torque of the vehicle without the engine dynamometer. The performance of the vehicle receive various running resistance. The study certificates performance of certification before a certification of used vehicle didn't carry out and certificate. This way evaluated on road test and chassis dynamometer The result of the study shows that it is much possible to apply the test. After comparing the engine torque of road driving with that of chassis dynamometer, the results are approximately the same. When rapidly speeded up, the road-load vehicle can pitch in some degrees, which may result in the fluctuations of acceleration, and then affect on the engine torque. Therefore it is confirmed that this method is easier way to measure the performance of vehicles.

Prediction of Vehicle Acceleration Performance and Fuel Economy (차량의 가속성능 및 연비예측)

  • 김만식;김경환
    • Journal of the KSME
    • /
    • v.33 no.10
    • /
    • pp.861-870
    • /
    • 1993
  • 여기서는 차량의 구동 성능을 예측하기 위하여 대우자동차에서 최근에 개발한 프로그램에 대하여 설명하고자 한다. 이 프로그램의 특징으로는 기능의 다양화 및 사용의 편리함을 들 수 있다. 이 프로그램은 수동 및 자동 변속기 장착 차량의 가속 성능과 연비를 예측할 수 있게 하였다. 정속 주행 시험과 같이 일정 속도의 주행 상태와, 가속 성능 시험에서와 같이 정해진 드로틀개도 변화에 따르는 주행 상태뿐 아니라, LA-4모두, Tokyo-10모드와 같이 시간에 따라 변화하는 속 도에 따른 주행 상태의 시뮬레이션도 가능하게 하였다. 주행 저항 계산방법으로는 풍동시험을 이용한 방법뿐 아니라 타행 (Coastdown) 시험을 이용하는 방법을 추가하였다. 예측 결과의 정 확도에 별로 영향을 주지않는 부분은 단순화시켜 모델링함으로써 입력 데이터 수를 작게 하였고 이로 인하여 사용자의 편리성을 높게 하였다.

  • PDF

Analysis of pneumatic braking component effects and characteristics of a diesel electric locomotive (디젤전기기관차의 공압제동 영향인자 및 특성 분석)

  • Choi, Don Bum;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.541-549
    • /
    • 2018
  • This paper deals with the braking dynamic behavior of diesel electric locomotive pulling domestic cargo and passenger vehicles. Friction coefficient, pneumatic pressure, and running resistance affecting the braking system were tested. For the friction coefficient, the Dynamo test was performed with reference to UIC 541-4. The results are analyzed by multivariate regression and the relationship between braking force and ititial velocity is presented. The pneumatic pressure were classified into service braking and emergency braking. In order to reflect the characteristics of the brake valve and piping, the pressure rising over time was measured in the vehicle. In order to reflect the external force acting on the vehicle, we carried out the test of EN 14067-4 and presented the second order polynomial formula on a running resistance. The running resistance test results were compared with other countries. The dynamic behavior of a diesel electric locomotive running on a straight flat track based on vehicle resources, friction coefficient, braking pressure, and running resistance is simulated using the time integration presented in EN 14531-1. The simulation results were compared and verified with the vehicle braking test results. The results of this study can be used to analyze the dynamic braking behavior of a train. Also, it is expected that various parameters affecting braking in vehicle design can be analyzed and used as basic data for braking performance improvement.