• Title/Summary/Keyword: 타원곡선 키 교환

Search Result 45, Processing Time 0.02 seconds

$AB^2$ Semi-systolic Multiplier ($AB^2$ 세미시스톨릭 곱셈기)

  • 이형목;김현성;전준철;유기영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.892-894
    • /
    • 2002
  • 본 논문은 유한 체 GF(/2 sup m/)상에서 A$B^2$연산을 위해 AOP(All One Polynomial)에 기반한 새로운 MSB(Most Significant bit) 유선 알고리즘을 제시하고, 제시한 알고리즘에 기반하여 병렬 입출력 세미시스톨릭 구조를 제안한다. 제안된 구조는 표준기저(standard basis)에 기반하고 모듈라(modoular) 연산을 위해 다항식의 계수가 모두 1인 m차의 기약다항식 AOP를 사용한다. 제안된 구조에서 AND와 XOR게이트의 딜레이(deray)를 각각 /D sub AND$_2$/와/D sub XOR$_2$/라 하면 각 셀 당 임계경로는 /D sub AND$_2$+D sub XOR/이고 지연시간은 m+1이다. 제안된 구조는 기존의 구조보다 임계경로와 지연시간 면에서 보다 효율적이다. 또한 구조 자체가 정규성, 모듈성, 병렬성을 가지기 때문에 VLSI 구현에 효율적이다. 더욱이 제안된 구조는 유한 체상에서 지수 연산을 필요로 하는 Diffie-Hellman 키 교환 방식, 디지털 서명 알고리즘 및 EIGamal 암호화 방식과 같은 알고리즘을 위한 기본 구조로 사용할 수 있다. 이러한 알고리즘을 응용해서 타원 곡선(elliptic curve)에 기초한 암호화 시스템(Cryptosystem)의 구현에 사용될 수 있다.

  • PDF

Implementation of a pipelined Scalar Multiplier using Extended Euclid Algorithm for Elliptic Curve Cryptography(ECC) (확장 유클리드 알고리즘을 이용한 파이프라인 구조의 타원곡선 암호용 스칼라 곱셈기 구현)

  • 김종만;김영필;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.5
    • /
    • pp.17-30
    • /
    • 2001
  • In this paper, we implemented a scalar multiplier needed at an elliptic curve cryptosystem over standard basis in $GF(2^{163})$. The scalar multiplier consists of a radix-16 finite field serial multiplier and a finite field inverter with some control logics. The main contribution is to develop a new fast finite field inverter, which made it possible to avoid time consuming iterations of finite field multiplication. We used an algorithmic transformation technique to obtain a data-independent computational structure of the Extended Euclid GCD algorithm. The finite field multiplier and inverter shown in this paper have regular structure so that they can be easily extended to larger word size. Moreover they can achieve 100% throughput using the pipelining. Our new scalar multiplier is synthesized using Hyundai Electronics 0.6$\mu\textrm{m}$ CMOS library, and maximum operating frequency is estimated about 140MHz. The resulting data processing performance is 64Kbps, that is it takes 2.53ms to process a 163-bit data frame. We assure that this performance is enough to be used for digital signature, encryption & decryption and key exchange in real time embedded-processor environments.

Hardware Implementation of Elliptic Curve Scalar Multiplier over GF(2n) with Simple Power Analysis Countermeasure (SPA 대응 기법을 적용한 이진체 위의 타원곡선 스칼라곱셈기의 하드웨어 구현)

  • 김현익;정석원;윤중철
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.73-84
    • /
    • 2004
  • This paper suggests a new scalar multiplication algerian to resist SPA which threatens the security of cryptographic primitive on the hardware recently, and discusses how to apply this algerian Our algorithm is better than other SPA countermeasure algorithms aspect to computational efficiency. Since known SPA countermeasure algorithms have dependency of computation. these are difficult to construct parallel architecture efficiently. To solve this problem our algorithm removes dependency and computes a multiplication and a squaring during inversion with parallel architecture in order to minimize loss of performance. We implement hardware logic with VHDL(VHSIC Hardware Description Language) to verify performance. Synthesis tool is Synplify Pro 7.0 and target chip is Xillinx VirtexE XCV2000EFGl156. Total equivalent gate is 60,508 and maximum frequency is 30Mhz. Our scalar multiplier can be applied to digital signature, encryption and decryption, key exchange, etc. It is applied to a embedded-micom it protects SPA and provides efficient computation.

Study on the Improvement about User Authentication of Android Third Party Application Through the Vulnerability in Google Voice (구글 보이스 취약점을 통한 안드로이드 서드 파티 어플리케이션의 사용자 인증 개선방안 연구)

  • Lee, Seyeong;Park, Jaekyun;Hong, Sungdae;Choi, Hyoungki
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.23-32
    • /
    • 2015
  • In the Android market, a large portion of the market share consists of third party applications, but not much research has been performed in this respect. Of these applications, mobile Voice Over IP (VoIP) applications are one of the types of applications that are used the most. In this paper, we focus on user authentication methods for three representative applications of the Google Voice service, which is a famous mobile VoIP application. Then, with respect to the Android file system, we developed a method to store and to send user information for authentication. Finally, we demonstrate a vulnerability in the mechanism and propose an improved mechanism for user authentication by using hash chaining and an elliptic curve Diffie-Hellman key exchange.

$AB^2$ Semi-systolic Architecture over GF$GF(2^m)$ ($GF(2^m)$상에서 $AB^2$ 연산을 위한 세미시스톨릭 구조)

  • 이형목;전준철;유기영;김현성
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.45-52
    • /
    • 2002
  • In this contributions, we propose a new MSB(most significant bit) algorithm based on AOP(All One Polynomial) and two parallel semi-systolic architectures to computes $AB^2$over finite field $GF(2^m)$. The proposed architectures are based on standard basis and use the property of irreducible AOP(All One Polynomial) which is all coefficients of 1. The proposed parallel semi-systolic architecture(PSM) has the critical path of $D_{AND2^+}D_{XOR2}$ per cell and the latency of m+1. The modified parallel semi-systolic architecture(WPSM) has the critical path of $D_{XOR2}$ per cell and has the same latency with PSM. The proposed two architectures, PSM and MPSM, have a low latency and a small hardware complexity compared to the previous architectures. They can be used as a basic architecture for exponentiation, division, and inversion. Since the proposed architectures have regularity, modularity and concurrency, they are suitable for VLSI implementation. They can be used as a basic architecture for algorithms, such as the Diffie-Hellman key exchange scheme, the Digital Signature Algorithm(DSA), and the ElGamal encryption scheme which are needed exponentiation operation. The application of the algorithms can be used cryptosystem implementation based on elliptic curve.