• Title/Summary/Keyword: 키워드 학습

Search Result 272, Processing Time 0.027 seconds

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.

Effects and class case of problem based learning in (PBL을 활용한 <패션의 이해> 수업 사례 및 학습효과)

  • Shin, Hye Won;Kim, Hee Ra
    • Journal of Korean Home Economics Education Association
    • /
    • v.28 no.3
    • /
    • pp.33-45
    • /
    • 2016
  • The purposes of this study were to develop PBL programs for class, and to examine the effects of PBL. The 2 PBL experiencing the roles of "fashion editor" and "fashion stylist" were conducted in "Fashion & Social Culture" and "Fashion Design" parts. The objects were 29 students in Home Economics Education Department. The effects of PBL were observed through contents analysis to reflective journals. Also, self assessment and learning satisfaction were analyzed. The effectiveness of PBL presented in reflective journals were 'understanding of cooperative learning', 'related knowledge adaption', 'real experience', 'self-examination & changed self', 'problem solving ability'. Also students' self-assessment and learning satisfaction were very high in two PBL programs. However, they had difficulties in co-working and lack of time.

Implementation of Forest Disaster Message Detection System by Processing Real-time SNS Stream (실시간 SNS 스트림 처리를 통한 산림재해 관련 메시지 검출 시스템 구현)

  • Moon, Jihye;Lim, Jisu;Song, Seokil
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.311-312
    • /
    • 2017
  • 이 논문에서는 SNS 스트림을 분석하여 산림재해 (산불, 산사태 등)에 관련한 메시지를 검출하는 시스템을 구현한다. 구현하는 시스템은 SNS 스트림에서 사전에 부여된 산림 재해 과련 키워드들을 포함하는 메시지를 실시간으로 검색한다. 검색 결과에 대해 산림재해와의 관련성을 관리자가 분류를 하고 분류한 결과는 기계학습 기법을 통해 학습되어 보다 정확한 산림재해 메시지 검출을 가능하게 한다. 제안하는 방법은 Spark Streaming 과 MLIB를 기반으로 구현한다.

  • PDF

Lesson Plan System for Teacher-Student Based on XML (XML 기반 교수-학생 학습지도 시스템)

  • 최문경;김지영;김행곤
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.406-408
    • /
    • 2002
  • 컴퓨터 기술의 발전과 네트워크의 급속한 확산으로 사회전반에 걸쳐 특허, 기업뿐 아니라 교육 현장의 효율화를 지원하기 위한 분야에서도 웹이 응용되고 있다. 교육 현장에서 작성되어지고 있는 문서 중 학습 지도안 작성은 교육 정보의 체계적인 제공이 미흡하고, 많은 시간과 노력이 요구되는 활동이므로 교수 개인이 모든 교수 활동에 필요한 지도안을 작성하는데는 어려움이 있다. 이를 위해, 웹에서 정보를 공유하여 문서의 재사용성을 높일 수 있는 시스템이 필요하게 되었다. 웹에서 표준화된 XML을 이용하여 문서의 생성과 검색, 그리고 재사용이 가능하도록 제공함으로써 교수자의 다양한 요구사항을 융통성 있게 수용할 수 있다. 본 논문에서는 학습지도안 시스템을 분석하여 공통DTD(Document Type Definition)를 생성하고 공통 DTD를 통해 표준화된 XML 문서를 제공한다. 좀더 효율적인 수업을 위해 학습지도안 작성이 용이하도록 학습지도안 작성용 에디터를 제공하며, 또한 XML DOM(Document Object Model)을 이용하여 검색기에서는 구조기반, 패싯, 키워드 검색 방법을 제시하고, 등록기에서는 DOM을 이용하여 해당 데이터를 추출하고 DB에 등록한다. 이는 문서의 재사용성을 높일 수 있다. 따라서, XML을 학교 현장에서 이용함으로써 웹에서 정보의 공유를 원활히 하고, 문서 작성의 효율성을 높이고자 한다.

  • PDF

Wire and Wireless News Retrieval System using Intelligent Agent (지능형 에이전트를 이용한 유.무선 뉴스 검색 시스템)

  • 한선미;우진운
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.628-630
    • /
    • 2001
  • 오늘날 인터넷이 보편화되면서 정보 검색 및 뉴스 검색들이 일반화되고 있지만 엄청난 정보의 양과 다양성 등으로 인해 사용자들은 오히려 정보 검색의 어려움을 호소하고 있다 이에 본 논문에서는 사용자 편의의 뉴스 검색과 사용자의 요구와 취향이 반영될 수 있도록 BPN(Back Propagation Neural Network)의 학습 기능을 가진 지능형 에이전트를 이용하여 뉴스 기사를 필터링하는 뉴스 검색 시스템을 제안한다. 이 시스템은 여러 신문사의 기사를 수집 및 통합하여 그 날의 주요 기사들을 데이터베이스에 저장하는 수집 에이전트, 사용자가 입력만 키워드를 이용하여 BPN 기법으로 학습시키는 훈련 에이전트 등으로 구성되어 있다. 또한 정보 통신 기술의 눈부신 발달로 투선 인터넷이 급속히 보급되는 현실을 감안하여 무선으로도 이러한 서비스를 제공할 수 있도록 시스템을 구성하였다.

  • PDF

Video Evaluation System Using Scene Change Detection and User Profile (장면전환검출과 사용자 프로파일을 이용한 비디오 학습 평가 시스템)

  • Shin Seong-Yoon;Rhee Yang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.633-636
    • /
    • 2004
  • 본 논문에서는 사용자 프로파일을 기반으로 한 정보 필터링을 사용하여 학생 개인의 특성에 맞는 효율적인 원격 비디오 학습 평가 시스템을 제안한다. 비디오를 이용한 문제 출제를 위하여 위치, 크기, 그리고 컬러 정보를 기반으로 키 프레임을 추출하고 그레이 레벨 히스토그램 차이와 시간 윈도우를 이용하여 문제 출제 구간을 추출한다. 또한 효율적인 평가를 위하여 카테고리 기반 시스템과 키워드 기반 시스템을 합성하여 문제를 출제하도록 한다. 따라서 학생들은 부족한 영역을 보충하고 관심 있는 영역을 유지하면서 학업 성취도를 향상시킬 수 있다.

  • PDF

An Extended Naive Bayesian Algorithm for Automatic Book Classification (자동 도서분류를 위한 확장된 나이브베이지안 알고리즘)

  • Kim, Sung-Soo;Jung, Hyun-Jun;Baik, Doo-Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.547-550
    • /
    • 2014
  • 국내 공공도서관에서는 잘못 분류된 도서의 서가(bookshelf) 배치로 인해 이용자의 불편과 해당 도서관의 도서분류체계와의 불일치 등으로 도서관리에 어려움을 겪고 있다. 또한 자동 도서분류를 위한 기계학습 등 다양한 알고리즘의 연구가 진행되어 왔으나 적은 학습데이터에서의 분류효과 향상에 한계가 있었다. 이에 이 연구에서는 KORMARC(Korea Machine Readable Cataloging) 의 색인어(키워드) 정보를 결합한 확장된 나이브베이지안 알고리즘을 제안하였다. 색인어 정보는 일반적으로 도서검색시스템에서 검색 효과를 높이기 위해 이용되고 있으며 실제 공공도서관에서의 실험을 통해 도서량이 적은 경우에 보다 높은 분류효과를 얻을 수 있음을 실험 평가하였다.

Implementation of Topic Classifier for University News-based BI Analysis (대학 BI 분석을 위한 주제분류기의 구현)

  • Jang, Seo-Yoon;Jang, Hyeon-Yeong;Cha, Chae-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.23-25
    • /
    • 2021
  • 본 논문에서는 대학별 홍보 전략, 발전에 기여하기 위한 서비스를 제안한다. 이 서비스는 데이터 수집에는 크롤링을 사용하고 사이킷 런을 사용하여 정확도를 최대화하고, 각 분류된 카테고리의 오류을 최소화한다. 이 서비스는 각 카테고리별로 특성이 높은 키워드를 사용하여 카테고리 별 학습 데이터셋을 생성한 후 이러한 학습 데이터셋을 바탕으로 각 기사들을 최적의 카테고리로 분류해주는 분류기를 구현한다. 이러한 분류기를 사용하여 분류된 기사들을 분석하여 막대 그래프 등의 시각화된 자료들로 볼 수 있도록 하여 기존의 대학 홍보 자료에 비해 누구든 쉽고 간단하게 접근이 가능하도록 한다.

  • PDF

Swear Word Detection through Convolutional Neural Network (딥러닝 기반 욕설 탐지)

  • Kim, Yumin;Gang, Hyobin;Han, Suhyeun;Jeong, Hieyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.685-686
    • /
    • 2021
  • 개인의 소셜미디어 활동이 활발해지면서 익명성을 악용하여 타인에게 욕설을 주저없이 해버리는 사용자가 늘고 있다. 본 연구는 욕설이 난무하는 채팅창에서 욕설 데이터를 크롤링하여 데이터셋을 구축하여 컨볼루션 네트워크로 학습시켰을 때 욕설을 탐지하고, 전체 문장에서 그 탐지한 욕설의 위치를 파악하여 블러링 처리를 할 수 있는지를 확인하는 것을 목적으로 한다. 전처리 작업으로 한글과 공백을 제외하고 형태소 단위로 토큰화한 후 불용어를 제거해서 패딩처리를 하였다. 학습 모델로는 1차원 컨볼루션을 사용하여 수집한 데이터의 80%를 훈련에 사용하고 나머지 20%를 테스트에 사용하였다. 키워드를 이용한 단순 분류 모델과 비교하였을 때, 본 연구에서 이용한 모델이 약 14% 정확도가 향상된 것을 확인할 수 있었다. 테스트에서 전체 문장에서 욕설이 포함되었을 때 욕설과 그 위치 정보를 잘 획득하는 것도 확인할 수 있었다.

Automated Narrative Assessment System Based on Network Analysis (네트워크 분석기반의 서술형 평가 자동화 시스템)

  • Hyeong-gi Jeon;Buem-jun Kim;Kyoung-Hee Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.109-110
    • /
    • 2023
  • 본 논문에서는 교육현장에서 서술평평가를 자동화하기 위한 시스템을 제안한다. 제안 시스템은 장문의 응답에서 단어를 추출하여 단어 간 네트워크를 생성하고 정답 네트워크와 비교를 통해 평가를 실시한다. 기존의 키워드 방식은 네트워크 관점에서 노드를 기준으로 채점하는 것이라면, 제안 시스템은 엣지를 기준으로 채점하게 되어 학습자의 답변에서 지식의 관계성을 채점할 수 있어 학습자에게 유용한 피드백을 줄 수 있을 것으로 기대한다.

  • PDF