• Title/Summary/Keyword: 키워드 연관 네트워크

Search Result 85, Processing Time 0.022 seconds

Analysis of Keyword Association and Keyword Network of #MeToo Movement on Twitter (트위터에 나타난 미투운동의 키워드 연관성 및 키워드 네트워크 분석)

  • Kwak, Soo-Jeong;Kim, Hyon Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.311-314
    • /
    • 2018
  • 최근 '미투운동'이 활발히 진행되면서 새로운 페미니즘의 물결을 맞이하였다. 이전의 페미니즘 운동과의 차이점은 SNS 를 통해 익명으로 활동하며 전파속도가 굉장히 빠르다는 것이다. 본 연구는 미투운동의 이러한 특성을 고려하여 실제 트위터 데이터에서 주요 키워드를 파악하고, 해당 키워드의 연관성 및 네트워크 분석으로 사회적 맥락을 알아본다.

Keyword-based networked knowledge map expressing content relevance between knowledge (지식 간 내용적 연관성을 표현하는 키워드 기반 네트워크형 지식지도 개발)

  • Yoo, Keedong
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.119-134
    • /
    • 2018
  • A knowledge map as the taxonomy used in a knowledge repository should be structured to support and supplement knowledge activities of users who sequentially inquire and select knowledge for problem solving. The conventional knowledge map with a hierarchical structure has the advantage of systematically sorting out types and status of the knowledge to be managed, however it is not only irrelevant to knowledge user's process of cognition and utilization, but also incapable of supporting user's activity of querying and extracting knowledge. This study suggests a methodology for constructing a networked knowledge map that can support and reinforce the referential navigation, searching and selecting related and chained knowledge in term of contents, between knowledge. Regarding a keyword as the semantic information between knowledge, this research's networked knowledge map can be constructed by aggregating each set of knowledge links in an automated manner. Since a keyword has the meaning of representing contents of a document, documents with common keywords have a similarity in content, and therefore the keyword-based document networks plays the role of a map expressing interactions between related knowledge. In order to examine the feasibility of the proposed methodology, 50 research papers were randomly selected, and an exemplified networked knowledge map between them with content relevance was implemented using common keywords.

A Knowledge Map Based on a Keyword-Relation Network by Using a Research Paper Database in the Computer Engineering Field (컴퓨터공학 분야 학술 논문 데이터베이스를 이용한 키워드 연관 네트워크 기반 지식지도)

  • Jung, Bo-Seok;Kwon, Yung-Keun;Kwak, Seung-Jin
    • The KIPS Transactions:PartD
    • /
    • v.18D no.6
    • /
    • pp.501-508
    • /
    • 2011
  • A knowledge map, which has been recently applied in various fields, is discovering characteristics hidden in a large amount of information and showing a tangible output to understand the meaning of the discovery. In this paper, we suggested a knowledge map for research trend analysis based on keyword-relation networks which are constructed by using a database of the domestic journal articles in the computer engineering field from 2000 through 2010. From that knowledge map, we could infer influential changes of a research topic related a specific keyword through examining the change of sizes of the connected components to which the keyword belongs in the keyword-relation networks. In addition, we observed that the size of the largest connected component in the keyword-relation networks is relatively small and groups of high-similarity keyword pairs are clustered in them by comparison with the random networks. This implies that the research field corresponding to the largest connected component is not so huge and many small-scale topics included in it are highly clustered and loosely-connected to each other. our proposed knowledge map can be considered as a approach for the research trend analysis while it is impossible to obtain those results by conventional approaches such as analyzing the frequency of an individual keyword.

Trend and related keyword extraction based on real-time Twitter analysis (실시간 트위터 분석을 통한 트렌드 및 연관키워드 추출)

  • Kim, Daeyong;Kim, Daehoon;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1710-1712
    • /
    • 2012
  • 최근 Twitter를 비롯한 소셜 네트워크 서비스의 급속한 확산으로 인해, 많은 수의 SNS 메시지가 실시간으로 생성되고 있다. 이러한 SNS상에서의 단문 글들을 실시간으로 분석하여 최신의 트렌드를 추출해 낼 수 있다면, 사용자에게 유용한 정보를 제공하는 것이 가능하다. 본 논문에서는 다량의 Tweet글들에 대한 실시간 분석을 바탕으로 트렌드를 추출하고 연관된 키워드를 제공하는 기법을 제안한다. 제안하는 기법은 실시간으로 생성되는 Tweet내에서 영어의 언어적 특성을 활용하여 최근 이슈화된 트렌드 키워드를 추출해낸다. 또한, Tweet 내에서 각 트렌드 키워드간 관계를 분석하여 연관 키워드를 제공하며, 동시에 Wikipedia와 Google에서의 검색을 통하여 다른 형태의 연관 키워드도 추출한다. 이 모든 과정은 제안된 트렌드 추출 알고리즘을 통해 실시간으로 제공된다. 제안된 기법을 바탕으로 시스템을 구현하고 다양한 실험을 통하여 키워드의 유효성 및 처리 속도 면에서 시스템의 성능을 평가한다.

Exploring the Research Topic Networks in the Technology Management Field Using Association Rule-based Co-word Analysis (연관규칙 기반 동시출현단어 분석을 활용한 기술경영 연구 주제 네트워크 분석)

  • Jeon, Ikjin;Lee, Hakyeon
    • Journal of Technology Innovation
    • /
    • v.24 no.4
    • /
    • pp.101-126
    • /
    • 2016
  • This paper identifies core research topics and their relationships by deriving the research topic networks in the technology management field using co-word analysis. Contrary to the conventional approach in which undirected networks are constructed based on normalized co-occurrence frequency, this study analyzes directed networks of keywords by employing the confidence index of association rule mining for pairs of keywords. Author keywords included in 2,456 articles published in nine international journals of technology management in 2011~2014 are extracted and categorized into three types: THEME, METHOD, and FIELD. One-mode networks for each type of keywords are constructed to identify core research keywords and their interrelationships with each type. We then derive the two-mode networks composed of different two types of keywords, THEME-METHOD and THEME-FIELD, to explore which methods or fields are frequently employed or studied for each theme. The findings of this study are expected to be fruitfully referred for researchers in the field of technology management to grasp research trends and set the future research directions.

The Expert Search System using keyword association based on Multi-Ontology (멀티 온톨로지 기반의 키워드 연관성을 이용한 전문가 검색 시스템)

  • Jung, Kye-Dong;Hwang, Chi-Gon;Choi, Young-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.183-190
    • /
    • 2012
  • This study constructs an expert search system which has a mutual cooperation function based on thesis and author profile. The proposed methodology is as follows. First, we propose weighting method which can search a keyword and the most relevant keyword. Second, we propose a method which can search the experts efficiently with this weighting method. On the preferential basis, keywords and author profiles are extracted from the papers, and experts can be searched through this method. This system will be available to many fields of social network. However, this information is distributed to many systems. We propose a method using multi-ontology to integrate distributed data. The multi-ontology is composed of meta ontology, instance ontology, location ontology and association ontology. The association ontology is constructed through analysis of keyword association dynamically. An expert network is constructed using this multi-ontology, and this expert network can search expert through association trace of keyword. The expert network can check the detail area of expertise through the research list which is provided by the system.

Social network analysis of keyword community network in IoT patent data (키워드 커뮤니티 네트워크의 소셜 네트워크 분석을 이용한 사물 인터넷 특허 분석)

  • Kim, Do Hyun;Kim, Hyon Hee;Kim, Donggeon;Jo, Jinnam
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.719-728
    • /
    • 2016
  • In this paper, we analyzed IoT patent data using the social network analysis of keyword community network in patents related to Internet of Things technology. To identify the difference of IoT patent trends between Korea and USA, 100 Korea patents and 100 USA patents were collected, respectively. First, we first extracted important keywords from IoT patent abstracts using the TF-IDF weight and their correlation and then constructed the keyword network based on the selected keywords. Second, we constructed a keyword community network based on the keyword community and performed social network analysis. Our experimental results showed while Korea patents focus on the core technologies of IoT (such as security, semiconductors and image process areas), USA patents focus on the applications of IoT (such as the smart home, interactive media and telecommunications).

Research Trends of Randomized Clinical Trial for Insomnia Using the Network Analysis (네트워크 분석을 이용한 불면의 무작위임상시험 해외 연구 동향)

  • Baek, Younghwa;Jin, Hee-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.1036-1047
    • /
    • 2013
  • In this study, we applied the time series analysis to the randomized controlled trial (RCT) researches related to insomnia for finding international trends. The data used in the analysis of 379 of ClinicalTrials, Web of Science was the of 132 by several keyword related with 'Insomnia' and 'Randomized Clinical Trial'. In ClinicalTials, RCT studies for insomnia, drug, cognitive behavioral therapy, depression were the key words make up the main network. In WOS, 'melatonin' key word was added in the main network. In addition to, we found the characteristic that the elderly and female subjects were steady studied.

Forecasting Open Government Data Demand Using Keyword Network Analysis (키워드 네트워크 분석을 이용한 공공데이터 수요 예측)

  • Lee, Jae-won
    • Informatization Policy
    • /
    • v.27 no.4
    • /
    • pp.24-46
    • /
    • 2020
  • This study proposes a way to timely forecast open government data (OGD) demand(i.e., OGD requests, search queries, etc.) by using keyword network analysis. According to the analysis results, most of the OGD belonging to the high-demand topics are provided by the domestic OGD portal(data.go.kr), while the OGD related to users' actual needs predicted through topic association analysis are rarely provided. This is because, when providing(or selecting) OGD, relevance to OGD topics takes precedence over relevance to users' OGD requests. The proposed keyword network analysis framework is expected to contribute to the establishment of OGD policies for public institutions in the future as it can quickly and easily forecast users' demand based on actual OGD requests.

Quantitative and Qualitative Considerations to Apply Methods for Identifying Content Relevance between Knowledge Into Managing Knowledge Service (지식 간 내용적 연관성 파악 기법의 지식 서비스 관리 접목을 위한 정량적/정성적 고려사항 검토)

  • Yoo, Keedong
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.119-132
    • /
    • 2021
  • Identification of associated knowledge based on content relevance is a fundamental functionality in managing service and security of core knowledge. This study compares the performance of methods to identify associated knowledge based on content relevance, i.e., the associated document network composition performance of keyword-based and word-embedding approach, to examine which method exhibits superior performance in terms of quantitative and qualitative perspectives. As a result, the keyword-based approach showed superior performance in core document identification and semantic information representation, while the word embedding approach showed superior performance in F1-Score and Accuracy, association intensity representation, and large-volume document processing. This study can be utilized for more realistic associated knowledge service management, reflecting the needs of companies and users.