• Title/Summary/Keyword: 키워드 소셜네트워크서비스 프라이버시 기계학습

Search Result 1, Processing Time 0.01 seconds

Exploiting Friend's Username to De-anonymize Users across Heterogeneous Social Networking Sites (이종 소셜 네트워크 상에서 친구계정의 이름을 이용한 사용자 식별 기법)

  • Kim, Dongkyu;Park, Seog
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1110-1116
    • /
    • 2014
  • Nowadays, social networking sites (SNSs), such as Twitter, LinkedIn, and Tumblr, are coming into the forefront, due to the growth in the number of users. While users voluntarily provide their information in SNSs, privacy leakages resulting from the use of SNSs is becoming a problem owing to the evolution of large data processing techniques and the raising awareness of privacy. In order to solve this problem, the studies on protecting privacy on SNSs, based on graph and machine learning, have been conducted. However, examples of privacy leakages resulting from the advent of a new SNS are consistently being uncovered. In this paper, we propose a technique enabling a user to detect privacy leakages beforehand in the case where the service provider or third-party application developer threatens the SNS user's privacy maliciously.