• Title/Summary/Keyword: 키워드 기반 기법

Search Result 300, Processing Time 0.036 seconds

A Automated Method for Training Keyword Spotter based on Speech Synthesis (키워드 음성인식을 위한 음성합성 기반 자동 학습 기법)

  • Lim, Jaebong;Lee, Jongsoo;Cho, Yonghun;Baek, Yunju
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.494-496
    • /
    • 2021
  • 최근 경량 딥러닝 기반 키워드 음성인식은 가전, 완구, 키오스크 등 다양한 응용에 음성 인터페이스를 쉽게 적용할 수 있는 기술로서 주목받고 있다. 키워드 음성인식은 일부 키워드만 인식 가능한 음성인식 기술로서 저성능 디바이스에서 활용 가능한 장점이 있다. 그러나 응용에 따라 필요한 키워드에 대하여 다시 음성데이터를 수집해야하고 이를 학습하여 모델을 새로 준비해야하는 단점이 있다. 따라서 본 연구에서는 음성데이터 수집 없이 음성합성을 통해 생성한 음성으로만 키워드 음성인식 모델을 학습하는 음성합성 기반 자동 학습 기법을 제안하였다. 생성한 음성데이터를 활용하고자하는 시도가 활발히 이루어지고 있으나, 기존 연구에서는 정확도를 유지하기 위하여 수집한 실제 음성데이터가 필요한 한계가 있다. 제안한 자동 학습 기법은 생성한 음성데이터에 대해 복합 데이터 증대 기법을 적용하여 실제 음성데이터 없이 키워드 음성인식의 정확도를 높였다. 제안한 기법에 대하여 상용 음성합성 서비스를 기반으로 수집한 한국어 키워드 데이터세트를 활용하여 성능평가를 진행하였다. 20개 한국어 키워드에 대해 실험한 결과, 제안한 기법을 적용하여 학습시킨 키워드 음성인식 모델의 정확도는 86.44%임을 확인하였다.

News Data Analysis Technique using Graph Mining (그래프 마이닝을 이용한 뉴스 데이터 분석 기법)

  • Lee, ChangJu;Park, Kisung;Han, Yongkoo;Lee, Young-Koo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.730-733
    • /
    • 2015
  • 대용량의 인터넷 뉴스 데이터로부터 유용한 정보를 찾기 위해 연관 키워드, 핫 키워드 분석과 같은 다양한 분석 기술들이 연구되고 있다. 기존의 토픽 모델 기반의 기법은 키워드들간의 연관성을 제대로 표현하지 못하여 마이닝한 연관 키워드와 핫 키워드의 정확도가 낮은 문제점이 있다. 최근, 뉴스 데이터를 뉴스 내의 단어를 버텍스로, 같은 문장내의 단어들을 에지로 연결하는 그래프 기반의 모델링기법이 연구되었다. 이러한 뉴스 그래프 DB에서 그래프 마이닝 기술을 적용하면 연관 키워드, 핫 키워드를 마이닝 할 수 있다. 본 논문은 그래프 마이닝 기술 기반의 효과적인 뉴스 데이터 분석 기술을 제안한다. 실제 뉴스 데이터를 통해 마이닝한 유용한 뉴스 그래프 패턴들을 보이고 뉴스 데이터 분석에 효과적으로 활용될 수 있음을 보인다.

A New Keyword Search Algorithm for RDF/S and OWL Documents (RDF/S 및 OWL 문서에 대한 키워드 검색 알고리즘)

  • Kim, Hak Soo;Son, Jin Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.321-324
    • /
    • 2009
  • XML 또는 RDBMS 에서의 키워드 검색은 기존의 정보 검색처럼 데이터의 구조 또는 질의 언어에 대한 사전 지식 없이 질의 처리를 수행하는 연구 분야 중의 하나이다. 오늘날 키워드 검색을 효율적으로 처리하기 위해 제안된 연구들은 그래프 기반의 질의 처리에 기반한 기법들에 초점을 두고 있다. 이러한 접근들은 XML 또는 RDBMS 안에 존재하는 데이터를 그래프 구조에 기반한 데이터로 변환한 다음에 그래프 탐색을 통해서 모든 질의 키워드를 포함하는 결과들을 찾는다. 그러나 기존의 기법들을 RDF/S 또는 OWL 문서와 같은 복잡한 그래프 구조에 적용하기에는 질의 성능 측면에서 많은 문제점을 가지고 있다. 또한, 온톨로지 언어의 의미적 단위로서의 RDF 트리플을 고려하지 않기 때문에 질의 결과에 대한 신뢰성을 보장할 수 없다. 이러한 관점에서 본 논문은 RDF/S 또는 OWL 저장소에서 효율적이고 의미적인 키워드 검색을 위한 인덱싱 기법 및 알고리즘을 설계한다.

Query Optimization for an Advanced Keyword Search on Relational Data Stream (관계형 데이터 스트림에서 고급 키워드 검색을 위한 질의 최적화)

  • Joo, Jin-Ung;Kim, Hak-Soo;Hwang, Jin-Ho;Son, Jin-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.6
    • /
    • pp.859-870
    • /
    • 2009
  • Despite the surge in the research for keyword search method over relational database, only little attention has been devoted to studying on relational data stream.The research for keyword search over relational data stream is intense interest because streaming data is recently a major research topic of growing interest in the data management. In this regard we first analyze the researches related to keyword search methodover relational data stream, and then this paper focuses on the method of minimizing the join cost occurred while processing keyword search queries. As a result, we propose an advanced keyword search method that can yield more meaningful results for users on relational data streams. We also propose a query optimization method using layered-clustering for efficient query processing.

Issue summarization scheme based on real-time SNS trend analysis (실시간 SNS 트렌드 분석에 기반한 이슈 요약 기법)

  • Kim, Daeyong;Kim, Daehoon;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1096-1097
    • /
    • 2013
  • 최근 Twitter를 비롯한 소셜 네트워크 서비스의 급속한 확산으로 인해, 많은 수의 SNS 메시지가 실시간으로 생성되고 있다. 이러한 SNS 상의 모든 글을 읽어보는 것은 현실적으로 불가능하며, 여러 포탈 사이트에서 제공되는 실시간 검색어 순위만으로는 상세 내용을 직관적으로 파악하기 어렵다. 따라서, 이러한 SNS상의 글을 실시간으로 분석하여 최신의 트렌드를 찾고 이와 연관된 내용을 분류 및 요약할 수 있다면, 사용자에게 유용한 최신 정보를 생성하여 제공할 수 있다. 본 논문에서는 Tweet 들을 분석하여 얻은 트렌드 키워드를 기반으로 관련된 Tweet 들을 주제 별로 분류한 후, 각 주제 별로 세부 내용을 요약해서 제공하는 기법을 제안한다. 제안하는 기법은 실시간으로 생성되는 Tweet 내에서 최근 화제가 된 트렌드 및 연관 키워드를 추출해낸다. 그 후, 해당 키워드가 출현한 Tweet 내에서 핵심 키워드를 찾고, 이를 기반으로 Tweet 들을 각각의 주제별로 분류하고 각 주제를 '이슈'로 정의한다. 마지막으로, 특정한 이슈에 해당되는 Tweet들을 분석하여 각 이슈 별로 키워드 리스트 및 단문 형식으로 요약된 줄거리를 생성한다. 제안된 기법을 바탕으로 프로토타입 시스템을 구현하고, 다양한 실험을 통하여 이슈 검출 기법의 유용성 면에서 성능을 평가한다.

Cluster-based keyword Ranking Technique (클러스터 기반 키워드 랭킹 기법)

  • Yoo, Han-mook;Kim, Han-joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.529-532
    • /
    • 2016
  • 본 논문은 기존의 TextRank 알고리즘에 상호정보량 척도를 결합하여 군집 기반에서 키워드 추출하는 ClusterTextRank 기법을 제안한다. 제안 기법은 k-means 군집화 알고리즘을 이용하여 문서들을 여러 군집으로 나누고, 각 군집에 포함된 단어들을 최소신장트리 그래프로 표현한 후 이에 근거한 군집 정보량을 고려하여 키워드를 추출한다. 제안 기법의 성능을 평가하기 위해 여행 관련 블로그 데이터를 이용하였으며, 제안 기법이 기존 TextRank 알고리즘보다 키워드 추출의 정확도가 약 13% 가량 개선됨을 보인다.

Automatic Construction of Reduced Dimensional Cluster-based Keyword Association Networks using LSI (LSI를 이용한 차원 축소 클러스터 기반 키워드 연관망 자동 구축 기법)

  • Yoo, Han-mook;Kim, Han-joon;Chang, Jae-young
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1236-1243
    • /
    • 2017
  • In this paper, we propose a novel way of producing keyword networks, named LSI-based ClusterTextRank, which extracts significant key words from a set of clusters with a mutual information metric, and constructs an association network using latent semantic indexing (LSI). The proposed method reduces the dimension of documents through LSI, decomposes documents into multiple clusters through k-means clustering, and expresses the words within each cluster as a maximal spanning tree graph. The significant key words are identified by evaluating their mutual information within clusters. Then, the method calculates the similarities between the extracted key words using the term-concept matrix, and the results are represented as a keyword association network. To evaluate the performance of the proposed method, we used travel-related blog data and showed that the proposed method outperforms the existing TextRank algorithm by about 14% in terms of accuracy.

Text mining based GPT utilization technique for research trend analysis (연구 동향 분석을 위한 텍스트 마이닝 기반 GPT 활용 기법)

  • Jeong-Hoon Ha;Bong-Jun Choi
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.369-370
    • /
    • 2023
  • 새로운 연구를 시작하기 위해서는 과거의 연구 동향을 분석해야 한다. 이를 위해 많은 양의 과거 연구 데이터를 조사해야 하는데, 모든 데이터를 직접 분류하는 방법은 많은 시간과 노력이 필요하기 때문에 비효율적이며, 텍스트 마이닝 기법을 활용한 키워드분석만으로는 연구 동향을 이해하기에 어려움이 존재한다. 이러한 전통적인 키워드 추출 방법의 한계점을 보완하기 위해 본 논문에서는 텍스트 마이닝 기반 GPT 활용 기법을 제안한다. 본 연구에서는 특정 도메인에 대해 텍스트 마이닝 기법을 활용하여 키워드를 추출하고, 이러한 키워드를 해당 도메인의 데이터로 미세 조정(fine-tuning)된 GPT의 입력으로 사용한다. GPT 결과로 생성된 문장을 텍스트 마이닝으로 나온 결과와 비교 분석한다. 이를 통해 연구 분야의 동향 분석을 보다 쉽게 할 수 있을 것으로 기대된다.

  • PDF

Web Site Keyword Selection Method by Considering Semantic Similarity Based on Word2Vec (Word2Vec 기반의 의미적 유사도를 고려한 웹사이트 키워드 선택 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.83-96
    • /
    • 2018
  • Extracting keywords representing documents is very important because it can be used for automated services such as document search, classification, recommendation system as well as quickly transmitting document information. However, when extracting keywords based on the frequency of words appearing in a web site documents and graph algorithms based on the co-occurrence of words, the problem of containing various words that are not related to the topic potentially in the web page structure, There is a difficulty in extracting the semantic keyword due to the limit of the performance of the Korean tokenizer. In this paper, we propose a method to select candidate keywords based on semantic similarity, and solve the problem that semantic keyword can not be extracted and the accuracy of Korean tokenizer analysis is poor. Finally, we use the technique of extracting final semantic keywords through filtering process to remove inconsistent keywords. Experimental results through real web pages of small business show that the performance of the proposed method is improved by 34.52% over the statistical similarity based keyword selection technique. Therefore, it is confirmed that the performance of extracting keywords from documents is improved by considering semantic similarity between words and removing inconsistent keywords.

Music Recommendation based on Blog Keyword Extraction (블로그 키워드 추출을 통한 음악 추천 기법)

  • Choi, Hong-gu;Jun, Sanghoon;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.701-704
    • /
    • 2010
  • 본 논문에서는 블로그의 포스트로부터 주요 키워드를 추출하여 노래 가사 데이터와 유사도를 분석, 해당 블로그 포스트에 적합한 음악을 추천하는 기법을 제안한다. 또한, 블로거가 포스트마다 제시한 태그들도 주요한 키워드로서 활용한다. 이를 위해서, 첫째로 TF-IDF 기법을 사용하여 텍스트로 구성된 포스트의 중요 키워드를 추출한다. 둘째로 포스트의 태그와 추출된 키워드를 기반으로 유사한 노래 가사를 LSA 기법으로 검색하여 가장 높은 유사도를 갖는 음악을 선택, 적합한 음악으로써 추천한다. 사용자 만족도 평가 실험을 통해서 제안하는 기법이 실제 추천에 적합한지 검증한다.