• Title/Summary/Keyword: 키워드추출 시스템

Search Result 288, Processing Time 0.028 seconds

Lesson Plan System for Teacher-Student Based on XML (XML 기반 교수-학생 학습지도 시스템)

  • 최문경;김지영;김행곤
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.406-408
    • /
    • 2002
  • 컴퓨터 기술의 발전과 네트워크의 급속한 확산으로 사회전반에 걸쳐 특허, 기업뿐 아니라 교육 현장의 효율화를 지원하기 위한 분야에서도 웹이 응용되고 있다. 교육 현장에서 작성되어지고 있는 문서 중 학습 지도안 작성은 교육 정보의 체계적인 제공이 미흡하고, 많은 시간과 노력이 요구되는 활동이므로 교수 개인이 모든 교수 활동에 필요한 지도안을 작성하는데는 어려움이 있다. 이를 위해, 웹에서 정보를 공유하여 문서의 재사용성을 높일 수 있는 시스템이 필요하게 되었다. 웹에서 표준화된 XML을 이용하여 문서의 생성과 검색, 그리고 재사용이 가능하도록 제공함으로써 교수자의 다양한 요구사항을 융통성 있게 수용할 수 있다. 본 논문에서는 학습지도안 시스템을 분석하여 공통DTD(Document Type Definition)를 생성하고 공통 DTD를 통해 표준화된 XML 문서를 제공한다. 좀더 효율적인 수업을 위해 학습지도안 작성이 용이하도록 학습지도안 작성용 에디터를 제공하며, 또한 XML DOM(Document Object Model)을 이용하여 검색기에서는 구조기반, 패싯, 키워드 검색 방법을 제시하고, 등록기에서는 DOM을 이용하여 해당 데이터를 추출하고 DB에 등록한다. 이는 문서의 재사용성을 높일 수 있다. 따라서, XML을 학교 현장에서 이용함으로써 웹에서 정보의 공유를 원활히 하고, 문서 작성의 효율성을 높이고자 한다.

  • PDF

An Efficient Frequent Melody Indexing Method to Improve Performance of Query-By-Humming System (허밍 질의 처리 시스템의 성능 향상을 위한 효율적인 빈번 멜로디 인덱싱 방법)

  • You, Jin-Hee;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.283-303
    • /
    • 2007
  • Recently, the study of efficient way to store and retrieve enormous music data is becoming the one of important issues in the multimedia database. Most general method of MIR (Music Information Retrieval) includes a text-based approach using text information to search a desired music. However, if users did not remember the keyword about the music, it can not give them correct answers. Moreover, since these types of systems are implemented only for exact matching between the query and music data, it can not mine any information on similar music data. Thus, these systems are inappropriate to achieve similarity matching of music data. In order to solve the problem, we propose an Efficient Query-By-Humming System (EQBHS) with a content-based indexing method that efficiently retrieve and store music when a user inquires with his incorrect humming. For the purpose of accelerating query processing in EQBHS, we design indices for significant melodies, which are 1) frequent melodies occurring many times in a single music, on the assumption that users are to hum what they can easily remember and 2) melodies partitioned by rests. In addition, we propose an error tolerated mapping method from a note to a character to make searching efficient, and the frequent melody extraction algorithm. We verified the assumption for frequent melodies by making up questions and compared the performance of the proposed EQBHS with N-gram by executing various experiments with a number of music data.

An Exploration of MIS Quarterly Research Trends: Applying Topic Modeling and Keyword Network Analysis (MIS Quarterly 연구동향 탐색: 토픽모델링 및 키워드 네트워크 분석 활용)

  • Kang, Eunkyung;Jung, Yeonsik;Yang, Seonuk;Kwon, Jiyoon;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.207-235
    • /
    • 2022
  • In a knowledge-based society where knowledge and information industries are the main pillars of the economy, knowledge sharing and diffusion and its systematic management are recognized as essential strategies for improving national competitiveness and sustainable social development. In the field of Information Systems (IS) research, where the convergence of information technology and management takes place in various ways, the evolution of knowledge occurs only when researchers cooperate in turning old knowledge into new knowledge from the perspective of the scientific knowledge network. In particular, it is possible to derive new insights by identifying topics of interest in the relevant research field, applied methodologies, and research trends through network-based interdisciplinary graftings such as citations, co-authorships, and keywords. In previous studies, various attempts have been made to understand the structure of the knowledge system and the research trends of the relevant community by revealing the relationship between research topics, methodologies, and co-authors. However, most studies have compared two or more journals and been limited to a certain period; hence, there is a lack of research that looked at research trends covering the entire history of IS research. Therefore, this study was conducted in the following order for all the papers (from its first issue in 1977 to the first quarter of 2022) published in the MIS Quarterly (MISQ) Journal, which plays a leading role in revealing knowledge in the IS research field: (1) After extracting keywords, (2) classifying the extracted keywords into research topics, methodologies, and theories, and (3) using topic modeling and keyword network analysis in order to identify the changes from the beginning to the present of the IS research in a chronological manner. Through this study, it is expected that by examining the changes in IS research published in MISQ, the developing patterns of IS research can be revealed, and a new research direction can be presented to IS researchers, nurturing the sustainability of future research.

Content-based Video Indexing and Retrieval System using MPEG-7 Standard (MPEG-7 표준에 따른 내용기반 비디오 검색 시스템)

  • 김형준;김회율
    • Journal of Broadcast Engineering
    • /
    • v.9 no.2
    • /
    • pp.151-163
    • /
    • 2004
  • In this paper, we propose a content-based video indexing and retrieval system using MPEG-7 standard to retrieve and manage videos efficiently. The proposed system consists of video indexing module for a video DB and video retrieval module to allow various query methods on a web environment. Video indexing module stores metadata such as manually typed in keywords, automatically recognized character names, and MPEG-7 visual descriptors extracted by indexing module into a DB in a sever side. A user can access to retrieval module by a web and retrieve desired videos through various query methods like keywords, faces, example and sketch. For this retrieval system, we propose ATC(Adaptive Twin Comparison) as a cut detection method for efficient video indexing and QBME(Query By Modified Example) as an improved content-based query method for the convenience of users. Experimental results show that the proposed ATC method detects cuts well and the proposed QBME method provides the conveniences better than existing query methods such as QBE(Query By Example) and QBS(Query By Sketch).

A Corpus Construction System of Consistent Document Categorization and Keyword Extraction (일관성 있는 문서분류 및 키워드 추출을 위한 말뭉치 구축도구)

  • Jeong, Jae-Cheol;Park, So-Young;Chang, Ju-No;Kihl, Tae-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.675-676
    • /
    • 2010
  • As the number of documents rapidly increases in the web environment, the efficient document classification approaches have been required to retrieve the desired information from too many documents. In this paper, we propose a corpus construction tool to annotate document classification information such as category, keywords, and usage to each product description document. The proposed tool can help a human annotator to correctly identify this information by providing the verification step to check the input results of other human annotators. Also, the human annotator can construct the corpus anytime anywhere by using the web-based proposed system.

  • PDF

Representative Keyword Extraction from Few Documents through Fuzzy Inference (퍼지추론을 이용한 소수 문서의 대표 키워드 추출)

  • 노순억;김병만;허남철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.837-843
    • /
    • 2001
  • In this work, we propose a new method of extracting and weighting representative keywords(RKs) from a few documents that might interest a user. In order to extract RKs, we first extract candidate terms and them choose a number of terms called initial representative keywords (IRKs) from them through fuzzy inference. Then, by expanding and reweighting IRKs using term co-occurrence similarity, the final RKs are obtained. Performance of our approach is heavily influenced by effectiveness of selection method of IRKs so that we choose fuzzy inference because it is more effective in handling the uncertainty inherent in selecting representative keywords of documents. The problem addressed in this paper can be viewed as the one of calculating center of document vectors. So, to show the usefulness of our approach, we compare with two famous methods - Rocchio and Widrow-Hoff - on a number of documents collections. The result show that our approach outperforms the other approaches.

  • PDF

Design and Implementation of the Extraction Mashup for Reported Disaster Information on SNSs (SNS에 제보되는 재해정보 추출 매시업 설계 및 구현)

  • Seo, Tae-Woong;Park, Man-Gon;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.11
    • /
    • pp.1297-1304
    • /
    • 2013
  • The quick report and propagate information are increasingly important because nowadays it is hard to predict the damages of flooding by unexpected heavy rain. In addition, there are not many ways to receive disaster information in real time. Accordingly, we designed the system which can earn information from a lot of messages on twitter. Above all, our system can extract and deploy disaster information by comparison with erstwhile social network service mash-up system as only broadcast media. Significant objective of this paper is to design the fastest extract disaster information system of mass media.

Attribute extract method based TDIDT for construction of user profile (사용자 프로파일 구축을 위한 TDIDT기반 관심단어 추출기법)

  • 이선미;박영택
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.321-327
    • /
    • 2002
  • 본 논문은 기존의 귀납적 결정 트리 방식에서의 문제점 개선을 통한 사용자 관심 프로파일 구축을 목적으로 한다. 특히 사용자 관심 프로파일의 정확도 향상을 위한 속성 선택에 대한 연구에 초점을 맞추고 있다. 사용자의 관심, 비관심 문서를 대상으로 사용자 관심 키워드를 생성하고 이를 바탕으로 초기 문서들을 재표현한다. 재표현된 문서를 입력 집합으로 하여 기계학습을 진행한다. 본 논문의 의사 결정 트리 생성 알고리즘은 입력 집합을 클래스별로 가장 잘 나누는 속성을 선택하여 노드를 구성하는 면에서는 기존의 알고리즘과 같다. 그러나 기존의 의사 결정 트리 알고리즘에서는 hill-climbing.방식을 사용함으로써 사용자의 관심을 나타내는 중요한 단어가 사용자 관심 프로파일에서 숨겨질 경우가 발생한다. 이를 최소화하기 위해 특징 추출을 통해 선택된 속성을 그대로 학습의 입력 데이터로 사용하는 것이 아니라 입력데이터를 가장 잘 나누는 속성과 그 다음 속성을 대상으로 disjunctive 연산을 통해 새로운 속성을 생성하여 이것을 속성 집합에 포함시키고 이를 학습의 입력 데이터로 이용한다. 이와 같이 disjunctive operator를 이용하여 새로운 속성을 의사 결정 트리 형성 시 이용하면 사용자의 중요한 관심을 포함하는 의미 있는(semantic) 사용자 관심 프로파일 구축이 가능해지고, 사용자 관심 프로파일을 기반으로 사용자가 관심 있는 문서를 제공할 수 있는 개인화 서비스를 제공한다.

  • PDF

Semantic Ontology Speech Recognition Performance Improvement using ERB Filter (ERB 필터를 이용한 시맨틱 온톨로지 음성 인식 성능 향상)

  • Lee, Jong-Sub
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.265-270
    • /
    • 2014
  • Existing speech recognition algorithm have a problem with not distinguish the order of vocabulary, and the voice detection is not the accurate of noise in accordance with recognized environmental changes, and retrieval system, mismatches to user's request are problems because of the various meanings of keywords. In this article, we proposed to event based semantic ontology inference model, and proposed system have a model to extract the speech recognition feature extract using ERB filter. The proposed model was used to evaluate the performance of the train station, train noise. Noise environment of the SNR-10dB, -5dB in the signal was performed to remove the noise. Distortion measure results confirmed the improved performance of 2.17dB, 1.31dB.

Representative Keyword Extraction from Few Documents through Fuzzy Inference (퍼지 추론을 이용한 소수 문서의 대표 키워드 추출)

  • 노순억;김병만;허남철
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.117-120
    • /
    • 2001
  • In this work, we propose a new method of extracting and weighting representative keywords(RKs) from a few documents that might interest a user. In order to extract RKs, we first extract candidate terms and then choose a number of terms called initial representative keywords (IRKS) from them through fuzzy inference. Then, by expanding and reweighting IRKS using term co-occurrence similarity, the final RKs are obtained. Performance of our approach is heavily influenced by effectiveness of selection method of IRKS so that we choose fuzzy inference because it is more effective in handling the uncertainty inherent in selecting representative keywords of documents. The problem addressed in this paper can be viewed as the one of calculating center of document vectors. So, to show the usefulness of our approach, we compare with two famous methods - Rocchio and Widrow-Hoff - on a number of documents collections. The results show that our approach outperforms the other approaches.

  • PDF