• Title/Summary/Keyword: 키워드빈도분석

Search Result 363, Processing Time 0.025 seconds

Exploring Domestic ESG Research Trends: Focusing on Domestic Research on ESG from 2012 to 2021 (국내 ESG 연구동향 탐색: 2012~2021년 진행된 국내 학술연구 중심으로)

  • Park, Jae Hyun;Han, Hyang Won;Kim, Na Ra
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.191-211
    • /
    • 2022
  • As the value of highly sustainable companies increases, ESG(Environmental, Social, and Governance) has emerged as the biggest topic of discussion for companies around the world. In addition, as domestically, more research is being done on ESG in line with global trends, it is necessary to examine ESG research trends. Accordingly, ESG academic papers that have been published for the past 10 years were collected for each year, and frequency analysis was conducted using text mining techniques regarding key themes and thesis titles. This paper analyzed the number of selected publications by year and the cumulated number of studies through bibliometric analysis. The findings suggested that the number of ESG papers is increasing each year and that academic interest in ESG-related issues continues to abound. Next, according to the results of frequency analysis of the keywords and titles of the research papers, the words- "ESG", "company", "society", "responsibility", "management", "investment", and "sustainability"- were extracted. This analysis identified the research fields and keywords that have been relevant to ESG in the past 10 years. As a result of comparing the major ESG issues presented in recent overseas studies and the common factors of the ESG key keywords presented in this study, it was confirmed that the environment is the focus of recent studies compared to previous studies. Third, it was found that the data used by domestic ESG studies mainly include the KEJI index, the KRX index, and the KCGS ESG evaluation index. After identifying the main research subjects of ESG papers, research found that 8 out of 152 domestic ESG studies were focused on SMEs. Through this study, it was possible to confirm the ESG research trend and increase in research, and future researchers divided the research topics and research keywords and presented basic data for selecting more diverse research topics. Based on both, the arguments of previous ESG studies conducted on SMEs and the results of this study, there is a lack of studies on guidelines for ESG practice and their application to SMEs, and more ESG research regarding SMEs will need to be conducted in the future.

A Study on the Research Trends in Domestic/International Information Science Articles by Co-word Analysis (동시출현단어 분석을 통한 국내외 정보학 학회지 연구동향 파악)

  • Kim, Ha Jin;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.1
    • /
    • pp.99-118
    • /
    • 2014
  • This paper carried out co-word analysis of noun and noun phrase using text-mining technique in order to grasp the research trends on domestic and international information science articles. It was conducted based on collected titles and articles of the papers published in the Journal of the Korean Society for Information Management (KOSIM) and Journal of American Society for Information Science and Technology (JASIST) from 1990 to 2013. By dividing whole period into five publication window, this paper was organized into the following processes: 1) analysis of high frequency co-word pair to examine the overall trends of both information science articles 2) analysis of each word appearing with high frequency keyword to grasp the detailed subject 3) focused network analysis of trend after 2010 when distinctively new keyword appeared. The result of the analysis shows that KOSIM has considerable portion of studies conducted regarding topics such as library, information service, information user and information organization. Whereas, JASIST has focused on studies regarding information retrieval, information user, web information, and bibliometrics.

A Similarity Measurement and Visualization Method for the Analysis of Program Code (프로그램 코드 분석을 위한 유사도 측정 및 가시화 기법)

  • Lee, Youngjoo;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.802-809
    • /
    • 2013
  • In this paper, we propose the similarity measurement method between two program codes by counting the frequency and length of continuous patterns of specifiers and keywords, which exist in two program codes. In addition, we propose the visualization method of this analysis result by formal concept analysis. Proposed method considers adjacencies of specifiers or keywords, which have not been considered in the previous similarity measurements. Proposed method can detect the plagiarism by analyzing the pattern in each function regardless of the order of function call and execution. In addition, the result of the similarity measurement is visualized by the lattice of formal concept analysis to increase the user understanding about the relations between program codes. Experimental results showed that proposed method succeeded in 96% plagiarism detections. Our method could be applied into the analysis of general documents.

A Study On the Healthcare Technology Trends through Patent Data Analysis (특허 데이터 분석을 통한 헬스케어 기술 트렌드 연구)

  • Han, Jeong-Hyeon;Hyun, Young-Geun;Chae, U-ri;Lee, Gi-Hyun;Lee, Joo-Yeoun
    • Journal of Digital Convergence
    • /
    • v.18 no.3
    • /
    • pp.179-187
    • /
    • 2020
  • In a social environment where population aging is rapidly progressing, the healthcare service market is growing fast with the increasing interest in health and quality of life based on rising income levels and the evolution of technology. In this study, after keywords were extracted from Korean and US patent data published on KIPRIS from 2000 to October 2019, frequency analysis, time series analysis, and keyword network analysis were performed. Through this, the change of technology trends were identified, which keywords related to healthcare was shifted from traditional medical words to ICT words. In addition, although the keywords in Korean patents are 55% similar to those in the US, they show an absolute gap in patent production volume. In the next study, we will analyze various data such as domestic and international research and can obtain meaningful implications in the global market on the identified keywords.

Technology Development Strategy of Piggyback Transportation System Using Topic Modeling Based on LDA Algorithm

  • Jun, Sung-Chan;Han, Seong-Ho;Kim, Sang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.261-270
    • /
    • 2020
  • In this study, we identify promising technologies for Piggyback transportation system by analyzing the relevant patent information. In order for this, we first develop the patent database by extracting relevant technology keywords from the pioneering research papers for the Piggyback flactcar system. We then employed textmining to identify the frequently referred words from the patent database, and using these words, we applied the LDA (Latent Dirichlet Allocation) algorithm in order to identify "topics" that are corresponding to "key" technologies for the Piggyback system. Finally, we employ the ARIMA model to forecast the trends of these "key" technologies for technology forecasting, and identify the promising technologies for the Piggyback system. with keyword search method the patent analysis. The results show that data-driven integrated management system, operation planning system and special cargo (especially fluid and gas) handling/storage technologies are identified to be the "key" promising technolgies for the future of the Piggyback system, and data reception/analysis techniques must be developed in order to improve the system performance. The proposed procedure and analysis method provides useful insights to develop the R&D strategy and the technology roadmap for the Piggyback system.

Exploring the Issue Structure of Drone Crime in Newspaper Articles: Focusing on Language Network Analysis (신문 기사에서의 드론 범죄 관련 이슈구조 탐색: 언어 네트워크 분석을 중심으로)

  • Park, Hee-Young;Lee, Soo-Bum
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.20-29
    • /
    • 2021
  • This study aims to explore the issue of drones and crime in newspaper articles. BIG KINDS, an online news archive of the Korea Press Foundation, collected 1,213 newspaper articles that met the terms of "drone" and "crime" in 11 central and 28 regional comprehensive newspapers between January 1, 1990 and May 1, 2021. Among them, we perform keyword frequency, centrality analysis, network structure construction, CONCOR analysis, and density matrix analysis on 117 key keywords. According to the analysis, the main issues were classified into eight, and the report analysis on drones and crimes in newspaper articles showed that the government's policy-making and social problems on protecting people's privacy, preventing illegal filming, securing navigation safety, social security and resolution. This study attempts to expand the field of humanities and social studies related to drones and crime, and specifically suggests the current status and counterplan against drone-related crimes as policy implications and media implications.

A Study on the Consumer Perception of Metaverse Before and After COVID-19 through Big Data Analysis (빅데이터 분석을 통한 코로나 이전과 이후 메타버스에 대한 소비자의 인식에 관한 연구)

  • Park, Sung-Woo;Park, Jun-Ho;Ryu, Ki-Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.287-294
    • /
    • 2022
  • The purpose of this study is to find out consumers' perceptions of "metaverse," a newly spotlighted technology, through big data analysis as a non-face-to-face society continues after the outbreak of COVID-19. This study conducted a big data analysis using text mining to analyze consumers' perceptions of metaverse before and after COVID-19. The top 30 keywords were extracted through word purification, and visualization was performed through network analysis and concor analysis between each keyword based on this. As a result of the analysis, it was confirmed that the non-face-to-face society continued and metaverse emerged as a trend. Previously, metaverse was focused on textual data such as SNS as a part of life logging, but after that, it began to pay attention to virtual reality space, creating many platforms and expanding industries. The limitation of this study is that since data was collected through the search frequency of portal sites, anonymity was guaranteed, so demographic characteristics were not reflected when data was collected.

Clustering of Web Document Exploiting with the Co-link in Hypertext (동시링크를 이용한 웹 문서 클러스터링 실험)

  • 김영기;이원희;권혁철
    • Journal of Korean Library and Information Science Society
    • /
    • v.34 no.2
    • /
    • pp.233-253
    • /
    • 2003
  • Knowledge organization is the way we humans understand the world. There are two types of information organization mechanisms studied in information retrieval: namely classification md clustering. Classification organizes entities by pigeonholing them into predefined categories, whereas clustering organizes information by grouping similar or related entities together. The system of the Internet information resources extracts a keyword from the words which appear in the web document and draws up a reverse file. Term clustering based on grouping related terms, however, did not prove overly successful and was mostly abandoned in cases of documents used different languages each other or door-way-pages composed of only an anchor text. This study examines infometric analysis and clustering possibility of web documents based on co-link topology of web pages.

  • PDF

Event Template Extraction for the Decision Support based on Social Media (소셜미디어 기반 의사결정 지원을 위한 이벤트 템플릿 추출)

  • Heo, Jeong;Ryu, Pum-Mo;Choi, Yoon-Jae;Kim, Hyun-Ki
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.53-57
    • /
    • 2012
  • 본 논문은 소셜 미디어 기반 의사결정 지원 시스템인 '소셜위즈덤'에 포함된 이벤트 템플릿 추출에 대해서 소개한다. 의사결정 지원 시스템은 경제적, 사회적 중요사항을 결정할 수 있도록 관련 정보와 인사이트(Insight)를 제공하는 정보시스템을 이른다. 기존 시스템은 단지 특정 키워드 빈도나 공기하는 키워드들의 관계만을 제공하였다. 그러나, 소셜위즈덤은 이벤트로 정의되는 주체(Subject), 이벤트 속성(Event-Property), 객체(Object)의 트리플(Triple) 집합인 템플릿을 추출하여 이를 기반으로 이벤트 정보를 함께 제공한다. 템플릿 추출은 고정밀 언어분석의 관계추출 기술과 온톨로지에 기반한 템플릿 제약 및 필터링 규칙을 이용하였다. 수작업으로 구축한 평가데이터로 평가한 결과, 템플릿 추출 성능(F-Score)은 뉴스 0.544, 블로그 0.3386, 트위터 0.3251이고 전체 통합 성능은 0.4648이었다. 필터링 성능(Accuracy)은 뉴스 0.7257, 블로그 0.6122, 트위터 0.6207이고 전체 통합 성능은 0.722이었다.

  • PDF

User-oriented Paper Search System by Relative Network (상대네트워크 구축에 의한 맞춤형 논문검색 시스템 모델링)

  • Cho Young-Im;Kang Sang-Gil
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.285-290
    • /
    • 2006
  • In this paper we propose a novel personalized paper search system using the relevance among user's queried keywords and user's behaviors on a searched paper list. The proposed system builds user's individual relevance network from analyzing the appearance frequencies of keywords in the searched papers. The relevance network is personalized by providing weights to the appearance frequencies of keywords according to users' behaviors on the searched list, such as 'downloading,' 'opening,' and 'no-action.' In the experimental section, we demonstrate our method using 100 users' search information in the University of Suwon.