• Title/Summary/Keyword: 키워드네트워크 분석

Search Result 478, Processing Time 0.022 seconds

Technology Development Strategy of Piggyback Transportation System Using Topic Modeling Based on LDA Algorithm

  • Jun, Sung-Chan;Han, Seong-Ho;Kim, Sang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.261-270
    • /
    • 2020
  • In this study, we identify promising technologies for Piggyback transportation system by analyzing the relevant patent information. In order for this, we first develop the patent database by extracting relevant technology keywords from the pioneering research papers for the Piggyback flactcar system. We then employed textmining to identify the frequently referred words from the patent database, and using these words, we applied the LDA (Latent Dirichlet Allocation) algorithm in order to identify "topics" that are corresponding to "key" technologies for the Piggyback system. Finally, we employ the ARIMA model to forecast the trends of these "key" technologies for technology forecasting, and identify the promising technologies for the Piggyback system. with keyword search method the patent analysis. The results show that data-driven integrated management system, operation planning system and special cargo (especially fluid and gas) handling/storage technologies are identified to be the "key" promising technolgies for the future of the Piggyback system, and data reception/analysis techniques must be developed in order to improve the system performance. The proposed procedure and analysis method provides useful insights to develop the R&D strategy and the technology roadmap for the Piggyback system.

Korea's Trade Rules Analysis using Topic Modeling : from 2000 to 2022 (토픽 모델링을 이용한 한국 무역규범 연구동향 분석 : 2000년~2022년)

  • Byeong-Ho Lim;Jeong-In Chang;Tae-Han Kim;Ha-Neul Han
    • Korea Trade Review
    • /
    • v.48 no.1
    • /
    • pp.55-81
    • /
    • 2023
  • The purpose of this study is to analyze the main issues and trends of Korean trade, and to draw implications for future research regarding trade rules. A total of 476 academic journal are analyzed using English keyword searched for 'Trade Rules' from 2000 to July 2022 in the Korean Journal Citation Index data base. The analysis methodology includes co-occurrence network and topic trend analysis which is a kind of text mining methods. The results shows that key words representing Korea's trade trend fall into four categories in which the number of research journals has rapidly increased, which are Topic 4 (Investment Treaty), Topic 7 (Trade Security), Topic 8 (China's Protectionism), and Topic 11 (Trade Settlement). The major background for these topics is the tension between the United States and China threatening the existing international trade system. A detailed study for China's protectionism, changes in trade security system, and new investment agreements, and changes in payment methods will be the challenges in near future.

네트워크 분석을 통한 정부 R&D 사업 유사연구영역 분석

  • Jeong, Jae-Ung;Han, Yu-Ri;Gang, In-Je;Choe, San;Jeong, Jae-Yeon;Park, Hyeon-U;Jeon, Seung-Pyo
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2017.05a
    • /
    • pp.559-570
    • /
    • 2017
  • 우리나라는 과거부터 현재까지 미래 성장동력 육성을 목표로 정부주도하에 국가 R&D 투자를 점진적으로 늘려왔다. 그 결과, 최근에는 GDP 대비 연구개발비 비중이 세계 최고 수준에 이르렀다. 이렇게 연구개발 예산의 양적인 확대와 함께 연구개발 예산의 효율적 활용은 더욱 중요한 과학기술 분야의 정책적 이슈로 부각되고 있다. 연구개발 예산의 효율적인 집행을 위해서는 R&D 사업의 유사 중복성의 검토가 필수적이지만, 대부분의 유사 중복성 검토는 전문가의 직관적인 판단에 근거하여 이루어져왔다. 하지만, 전문가의 직관에만 의지한 판단은 때로는 불명확하거나 잘못된 결과를 가져올 수도 있다. 따라서, 본 연구에서는 네트워크 분석을 통해 정부 R&D 사업의 유사 중복성을 체계적으로 검토하기 위한 데이터기반의 방법론을 제안하여 전문가의 직관에 의한 유사 중복성 검토를 보완할 수 있는 가능성을 모색하고자 한다. 먼저, 본 연구에서는 정부 R&D사업 유사영역의 전체적인 구조 및 형태와 국가과학기술연구회 소속 25개 정부출연연구기관 R&D사업의 유사영역의 전반적인 형태를 시각화하여 유사영역을 파악하고 직관적인 판단과 선택을 할 수 있는 의사결정 정보를 제공하는데 초점을 두었다. 이를 위해, NTIS의 2015년 데이터를 사용하여 과제 키워드 기반으로 동시단어출현 분석을 수행하였다. 본 분석을 통해 25개 기관의 세부적인 유사연구영역 형태를 제시하였으며, 국내의 과학기술정책적 또는 과학기술학적인 현상들을 시각화하였다. 그 결과, 국내 출연연 R&D사업이 기관별 고유영역이 확고히 보이는 Mode 1적인 형태와 사회경제적인 맥락과 필요 및 유망성을 따르고, 다학제적, 적용중심적이며 과제별로 다양한 과제수행기관들이 과제들을 동시에 수행하는 Mode 2적인 형태가 출연연의 R&D사업 내에 공존하고 있음을 확인하였다.

  • PDF

Network Analysis of Domestic and Foreign Marine Ecosystem Management Plans (국내외 해양생태계 관리계획의 네트워크 분석)

  • Jeong, Sehwa;Kim, Yeongha;Yeo, Unsang;Sung, Kijune
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.24-34
    • /
    • 2021
  • Many countries have established and implemented marine ecosystem management plans to solve various problems arising from excessive development and use of marine and coastal areas. In this study, network analysis was applied to compare and understand marine ecosystem management's direction and characteristics in Korea and other maritime countries. The results showed that the words 'strengthen,' 'promote,' 'improve,' and 'establish' were the keywords used a lot in domestic and foreign marine ecosystem management plans. Establishing a foundation for marine ecosystem management, establishing international cooperation and partnerships, and strengthening climate change adaptation was commonly included. However, there were some differences in detailed management plans. In foreign countries, it aims to present management measures for certain species and improve the existing institutional foundation. Still, in Korea, it aims to strengthen the comprehensive management of marine life and establish an institutional foundation for marine ecosystems. This study is expected to help understand the direction of domestic and overseas marine ecosystem management and establish a domestic marine ecosystem management plan in the future.

Trends Analysis on Research Articles of the Sharing Economy through a Meta Study Based on Big Data Analytics (빅데이터 분석 기반의 메타스터디를 통해 본 공유경제에 대한 학술연구 동향 분석)

  • Kim, Ki-youn
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.97-107
    • /
    • 2020
  • This study aims to conduct a comprehensive meta-study from the perspective of content analysis to explore trends in Korean academic research on the sharing economy by using the big data analytics. Comprehensive meta-analysis methodology can examine the entire set of research results historically and wholly to illuminate the tendency or properties of the overall research trend. Academic research related to the sharing economy first appeared in the year in which Professor Lawrence Lessig introduced the concept of the sharing economy to the world in 2008, but research began in earnest in 2013. In particular, between 2006 and 2008, research improved dramatically. In order to grasp the overall flow of domestic academic research of trends, 8 years of papers from 2013 to the present have been selected as target analysis papers, focusing on titles, keywords, and abstracts using database of electronic journals. Big data analysis was performed in the order of cleaning, analysis, and visualization of the collected data to derive research trends and insights by year and type of literature. We used Python3.7 and Textom analysis tools for data preprocessing, text mining, and metrics frequency analysis for key word extraction, and N-gram chart, centrality and social network analysis and CONCOR clustering visualization based on UCINET6/NetDraw, Textom program, the keywords clustered into 8 groups were used to derive the typologies of each research trend. The outcomes of this study will provide useful theoretical insights and guideline to future studies.

Webdrama Analysis and Recommendation using Text Mining and Opinion Mining Technique of Social Media (소셜미디어 빅데이터의 텍스트 마이닝과 오피니언 마이닝 기법을 활용한 웹드라마 분석과 제안)

  • Oh, Se-Jong;Kim, Kenneth Chi Ho
    • Cartoon and Animation Studies
    • /
    • s.44
    • /
    • pp.285-306
    • /
    • 2016
  • With the increase use of smartphones, users can consume contents such as webtoon, webnovel and TV drama directly provided by the producers. In this Direct-to-Consumer era, webdrama services from the portal websites are increasing rapidly. Webdramas such as , , and can be analyzed in real time using responses such as unique users, likes, and comments. The analyses used in this research were Social Media Big Data Mining Method and Opinion Mining Method. Specific key words from webdrama can be extracted and viewers positive, neutral or negative emotion can be predicted from the words. The analyses of popular webdramas showed that the established K-Pop Idol member appearance and servicing portal site greatly influence the views, traffics, comments, and likes. Also, 'Mobile TV' proved the effectiveness as another platform other than television. Mobile targeted contents and robust business models still to be developed and identified. Overcoming these few tasks, Korea will be proven to be a webdrama content powerhouse.

A study on integrating and discovery of semantic based knowledge model (의미 기반의 지식모델 통합과 탐색에 관한 연구)

  • Chun, Seung-Su
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.99-106
    • /
    • 2014
  • Generation and analysis methods have been proposed in recent years, such as using a natural language and formal language processing, artificial intelligence algorithms based knowledge model is effective meaning. its semantic based knowledge model has been used effective decision making tree and problem solving about specific context. and it was based on static generation and regression analysis, trend analysis with behavioral model, simulation support for macroeconomic forecasting mode on especially in a variety of complex systems and social network analysis. In this study, in this sense, integrating knowledge-based models, This paper propose a text mining derived from the inter-Topic model Integrated formal methods and Algorithms. First, a method for converting automatically knowledge map is derived from text mining keyword map and integrate it into the semantic knowledge model for this purpose. This paper propose an algorithm to derive a method of projecting a significant topic map from the map and the keyword semantically equivalent model. Integrated semantic-based knowledge model is available.

An Analysis of Keywords Related to Neighborhood Healing Gardens Using Big Data (빅데이터를 활용한 생활밀착형 치유정원 연관키워드 분석)

  • Huang, Zhirui;Lee, Ai-Ran
    • Land and Housing Review
    • /
    • v.13 no.2
    • /
    • pp.81-90
    • /
    • 2022
  • This study is based on social needs for green healing spaces assumed to enhance mental health in a city. This study proposes development directions through the analysis of modern social recognition factors for neighborhood gardens. As a research method, web information data was collected using Textom among big data tools. Text Mining was conducted to extract elements and analyze their relationship through keyword analysis, network analysis, and cluster analysis. As a result, first, the healing space and the healing environment were creating an eco-friendly healthy environment in a space close to the neighborhood within the city. Second, neighborhood gardens included projects and activities that involved government, local administration, and citizens by linking facilities as well as living culture and urban environments. These gardens have been reinforced through green welfare and service programs. In conclusion, friendly gardens in the neighborhood for the purpose of public interest, which are beneficial to mental health, are green infrastructures as a healing environment that can produce positive effects.

An Investigation on Scientific Data for Data Journal and Data Paper (Scientific Data 학술지 분석을 통한 데이터 논문 현황에 관한 연구)

  • Chung, EunKyung
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.1
    • /
    • pp.117-135
    • /
    • 2019
  • Data journals and data papers have grown and considered an important scholarly practice in the paradigm of open science in the context of data sharing and data reuse. This study investigates a total of 713 data papers published in Scientific Data in terms of author, citation, and subject areas. The findings of the study show that the subject areas of core authors are found as the areas of Biotechnology and Physics. An average number of co-authors is 12 and the patterns of co-authorship are recognized as several closed sub-networks. In terms of citation status, the subject areas of cited publications are highly similar to the areas of data paper authors. However, the citation analysis indicates that there are considerable citations on the journals specialized on methodology. The network with authors' keywords identifies more detailed areas such as marine ecology, cancer, genome, database, and temperature. This result indicates that biology oriented-subjects are primary areas in the journal although Scientific Data is categorized in multidisciplinary science in Web of Science database.

Exploring Dynamics of Information Systems Research Trend Using Text Mining Approach (텍스트 마이닝 기법을 이용한 정보시스템 분야 연구 동향 분석)

  • Jungkook An;Sodam Kim;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.18 no.3
    • /
    • pp.73-96
    • /
    • 2016
  • Recent research on information and communication technology and Internet-of-Things indicates that convergence and integration facilitate the development of various technologies. Similarly, related academic theories and technologies have also gained attention. This paradigm shift facilitated the convergence and integration of academic disciplines. In particular, information systems have become initiators of change. However, only a limited number of studies have been conducted on information systems. To address this gap, this study explores the future direction of information systems based on the core concepts and results of the comparative analysis conducted on research trends. We considered 48,102 data obtained from international top journals from 1980 to 2015. We analyzed journal titles, authors, abstracts, and keywords. We conducted the network analysis on existing collaborative studies and performed comparative analysis to visualize the results. The results provide an in-depth understanding of information systems and provides directions for future research on this area.