• Title/Summary/Keyword: 클레임관리

Search Result 93, Processing Time 0.019 seconds

Quantification of Schedule Delay Risk of Rain via Text Mining of a Construction Log (공사일지의 텍스트 마이닝을 통한 우천 공기지연 리스크 정량화)

  • Park, Jongho;Cho, Mingeon;Eom, Sae Ho;Park, Sun-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.109-117
    • /
    • 2023
  • Schedule delays present a major risk factor, as they can adversely affect construction projects, such as through increasing construction costs, claims from a client, and/or a decrease in construction quality due to trims to stages to catch up on lost time. Risk management has been conducted according to the importance and priority of schedule delay risk, but quantification of risk on the depth of schedule delay tends to be inadequate due to limitations in data collection. Therefore, this research used the BERT (Bidirectional Encoder Representations from Transformers) language model to convert the contents of aconstruction log, which comprised unstructured data, into WBS (Work Breakdown Structure)-based structured data, and to form a model of classification and quantification of risk. A process was applied to eight highway construction sites, and 75 cases of rain schedule delay risk were obtained from 8 out of 39 detailed work kinds. Through a K-S test, a significant probability distribution was derived for fourkinds of work, and the risk impact was compared. The process presented in this study can be used to derive various schedule delay risks in construction projects and to quantify their depth.

A Study on the Estimation of Change Orders Impact for the Public Construction (공공건설공사 설계변경에 따른 손실 추정에 관한 기초연구)

  • Lee, Min-Jae;Park, Bum-Jin;Im, Keon-Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.363-369
    • /
    • 2008
  • Change is inevitable and is a reality of construction projects. Change adjustment includes the cost associated with materials, labor, etc. However, the actions of a contractor can cause a loss of productivity and furthermore can result in disruption of the whole project because of a cumulative or ripple effect. Because of its complicated nature, it becomes a complex issue to determine the cumulative impact (ripple effect) caused by single or multiple change orders. Furthermore, owners and contractors do not always agree on the adjusted contract price for the cumulative impact of the changes. What is needed is a reliable method to identify and quantify the loss of productivity caused by cumulative impact of change orders. This study survey the change orders data in domestic area for public construction and analyze to quantify change order impact. This study developed concepts of "%CO", "%Delta", "%T" to capture change order effect on project and search the relationships between them. Finally, this study find strong relationship between change order and loss.

A Case Study on the Calculation of Delay Damages for Contractors according to the Extension of Contract Period (계약기간 연장에 따른 시공자의 손실비용 산정에 관한 사례 연구.)

  • Lee Gi-Han;Kim Yong-Su
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.305-310
    • /
    • 2001
  • The purpose of this study is to calculate delay damages for contractors. The study has been performed by investigation of delay cost occurrence status and the analysis of subway construction cases. The results of this study are as follows: 1. Delay cost( 1day) equivalent to $0.005\%$ of total construction cost by analysis case studies. 2. Including bank interest, dealy cost is analysed as the following; $1.1\~9.2\%$ of total construction cost in part extension period, $3.3\~11.0\%$ of total construction cost in total extension period. 3. In comparison between liquidated damages and delay cost, liquidated damages account for average 20.1 times of delay costs. 4. Acceleration cost will be calculate on the basis of delay cost calculation method. In the result of this method, acceleration cost is equal to delay cost at least or must be large than delay cost

  • PDF