• Title/Summary/Keyword: 클레이 나노 혼합 재료

Search Result 6, Processing Time 0.022 seconds

Synthesis of polystyrene-clay nanocomposites and investigation of their barrier property (폴리스티렌-클레이 나노 복합재료의 합성 및 차단 특성에 관한 연구)

  • Dhungana, Biraj;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2544-2549
    • /
    • 2013
  • In prepaparation of the high performance polymer/clay nanocomposite, it is essential to modify the hydrophillic $Na^+$-MMT to hydrophobic alkyl ammonium-MMT via organic surfactant. The organic surfactant, VDAC (vinylbenzyldimethyl-dodecylammonium chloride) was synthesized from two primary chemicals and $VDA^+$-MMT was prepared from $Na^+$-MMT through a cation exchange reaction between $Na^+$ and $VDA^+$ (vinylbenzyldimethyl-$dodecylammonium^+$) cation. $VDA^+$-MMT was then dispersed in styrene and polystyrene/$VDA^+$-MMT nanocomposite was fabricated by in-situ polymerization reaction. The clay dispersion and barrier property of the nanocomposite were investigated. From the investigations, it was confirmed that dispersion of the $VDA^+$-MMT was enhanced compared with that of $Na^+$-MMT and as a consequency of better dispersion, barrier property of organic solvent was improved in a great extent.

Preparation and Characterization of Polyurethane/Organoclay Nanocomposites by UV Curing (UV경화에 의한 폴리우레탄/유기화클레이 나노복합재료 제조와 물성 연구)

  • Shin, Geumsig;Chang, Young-Wook;Kim, Seong Woo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.156-162
    • /
    • 2012
  • Polyurethane (PU)/organoclay nanocomposites were prepared by mixing UV curable urethane acrylate oligomer with organoclay, and a subsequent curing by UV irradiation. As organoclays, commercially available Cloisite 20A (C20A) and acrylsilane modified C20A were used. XRD and TEM analyses revealed that the UV cured PU/clay nanocomposites formed intercalated nanocomposites, and acrylsilane modified C20A are dispersed more finely than unmodified C20A in PU matrix. DMTA, pencil hardness and adhesion test onto PET substrate showed that the clay nanolayers induced an increase in the properties, and the enhancement in the properties was more pronounced in the PU/acrylsilane modified C20A nanocomposites than in the PU/unmodified C20A nanocomposites. It was also observed that the PU/surface modified clay nanocomposites showed remarkably lower shrinkage upon UV curing than the unfilled PU. The nanocomposites showed excellent optical transparency but lower gloss as compared to unfilled PU.

Study on the Properties of Polystyrene and Styrenic Copolymer Containing Carbon Nanotubes and Nanoclay (탄소나노튜브와 나노클레이를 포함하는 폴리스티렌 및 스티렌계 공중합체 나노복합재료의 물성에 관한 연구)

  • Lee, Kyung Hoon;Kim, Young Doo;Lee, Minho;Min, Byong Hun;Kim, Jeong Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.493-499
    • /
    • 2009
  • The properties of polystyrene and styrenic copolymer nanocomposites containing carbon nanotubes (CNT) and nanoclays were studied. Polystyrene and styrenic copolymer containing styrene and vinylbenzyl trimethylammonium chloride (SVTAC) were synthesized by emulsion polymerization. Polystyrene/CNT/clay and SVTAC/CNT/clay nanocomposites with various concentrations of CNT and different types of clay were prepared via mixing of polystyrene emulsion and clay. SVTAC/CNT nanocomposites showed a better electrical conductivity than PS/CNT nanocomposites. Nanocomposites with more surfactant during polymerization showed a better electrical conductivity than the ones with less surfactant. These indicated the positive effect of comonomer and surfactant on the electrical conductivity. Transmission electron microscopy (TEM) was used to analyze the state of CNT dispersion. TEM results showed that CNT loading, comonomer composition and amount of surfactant affected the final dispersion of CNT in nanocomposites. In order to confirm the effects of CNT loading, comonomer composition and the amount of surfactant on the thermal and dynamic mechanical properties, DSC and DMA analyses were conducted.

Preparation of Polypropylene/Clay Nanocomposites Using Aminosilane Treated Clay (아미노실란 개질 클레이를 사용한 폴리프로필렌 클레이 나노복합재료)

  • Hong Chae-Hwan;Bae Jin-Woo;Lee Yong-Bum;Lee Choon-Soo;Jho Jae-Young;Nam Byeong-Uk
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.318-325
    • /
    • 2006
  • Polypropylene-clay nanocomposites were studied by the modification of clay with amino silanes to introduce covalent bonds in nanocomposites, and prepared by melt-compounding with polypropylene, clay modified with amino silanes and maleic anhydride grafted polypropylene. The . .structure and surface properties of modified clay were determined by x-ray diffraction, infrared spectrum, and solid-state $^{29}Si$ nuclear magnetic resonance spectrum. The modification of clay with aminosilanes led to the increase of the silicate interlayers to about $19.8{\AA}$, the weakening effects of hydroxy group at $3650cm^{-1}$ and the signal of amine groups at -69 ppm proved that the modification had taken place.

Natural Rubber-Clay Nanocomposites by Latex Method : Morphology and Mechanical Properties (라텍스법에 의한 천연고무-클레이 나노 복합재료: 모폴로지와 기계적 물성)

  • Kim, W.H.;Kang, J.H.;Kang, B.S.;Cho, U.R.
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.27-39
    • /
    • 2006
  • In this study, modified DA-MMT filled NR/DA-MMT nanocomposites were manufactured by a latex method and a compounding method. Cure characteristics and mechanical properties of the Cloisite 15A, carbon black, Na-MMT filled NR compounds and the DA-MMT filled NR compound by a latex method were also evaluated. The filler content of all compounds was 10phr except the carbon black filled compound. Degree of intercalation and dispersion was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). According to the XRD diffraction pattern and TEM analysis, extensive intercalation and homogeneous dispersion of the clay were obtained after the two-roll milling. Although the layer distance was increased, some parts of DA-MMT showed the layer distance of Na-MMT after vulcanization. DA-MMT filled NR compounds showed the highest ODR torques, tensile strength, modulus, and tear energy. The NR/DA-MMT nanocomposite (by a latex method) compared with a NR/DA-MMT nanocomposite (by a compounding method) was found that the improvement of the mechanical properties was mainly due to the degree of dispersion of the clay.

Improvement of Mechanical Properties of UV-curable Resin for High-aspect Ratio Microstructures Fabricated in Microstereolithography (마이크로광조형에서 고 세장비 구조물 집적화 가공을 위한 UV 경화성 수지의 물성 개선)

  • Lee, Su-Do;Choi, Jae-Won;Park, In-Beak;Ha, Chang-Sik;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.119-127
    • /
    • 2007
  • Recently, microstructures fabricated using microstereolithography technology have been used in the biological, medical and mechanical fields. Microstereolithography can fabricate real 3D microstructures with fine features, although there is presently a limited number of materials available for use in the process. Deformation of the fine features on a fabricated microstructure remains a critical issue for successful part fabrication, and part deformation can occur during rinsing or during fabrication as a result of fluid flow forces that occur during movement of mechanical parts of the system. Deformation can result in failure to fabricate a particular feature by breaking the feature completely, spatial deflection of the feature, or attaching the feature to neighboring microstructures. To improve mechanical strength of fabricated microstructures, a clay nanocomposite can be used. In particular, a high-aspect ratio microstructure can be fabricated without distortion using photocurable liquid resin containing a clay nanocomposite. In this paper, a clay nanocomposite was blended with a photocurable liquid resin to solve the deformation problem that occurs during fabrication and rinsing. An optimal mixture ratio of a clay nanocomposite was found through tensile testing and the minimal allowable distance between microstructures was found through fabrication experimentation. Finally, using these results, high-aspect ratio microstructures were fabricated using a clay nanocomposite resin without distortion.