• Title/Summary/Keyword: 클러치 체결

Search Result 10, Processing Time 0.013 seconds

Vibration Characteristics and Topology Optimization of a Double Damper Lock-Up Clutch in a Torque Converter System (토크컨버터 장착 이중댐퍼 체결클러치의 진동특성해석 및 위상최적화)

  • Kim, Kwang-Joong;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1129-1136
    • /
    • 2010
  • Damper springs in a drive-line absorb the impulsive torque generated when a lock-up clutch is connected directly, instead of via a fluid coupling. Design optimization and finite element analysis were performed to improve the shock- and vibration-absorption capacity of the lock-up clutch. For this purpose, a multi-body dynamics model was developed by including the main parts of a vehicle, such as an engine with a clutch, a transmission, drive shafts and wheels, and a whole mass of a vehicle. The spring constants were selected so that resonance of a system could be avoided. Damper springs were optimized on the basis of the spring constants, impulsive torques, compressed angles, spring counts, fatigue constraints, etc. Topology optimization was performed for three plates with the damper springs. The compliance was set up as an objective function, and volume fraction was fixed below 0.3. A new shape for the plates was proposed on the basis of the topology result.

Study on the Lubricant Flow Behaviors in the Wet Clutch Pack System of Dual Clutch Transmission (습식 DCT(Dual Clutch Transmission) 클러치 팩 내부에서의 체결 동작에 따른 변속기유 거동 연구)

  • Kim, WooJung;Lee, SangHo;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.85-91
    • /
    • 2017
  • This work studies the flow behaviors in the gap between the friction pad and separator in wet-clutch systems. The fluid volume of the lubricant is modeled using the entire system of wet-clutch pack of a dual clutch transmission that has larger outer radius of odd gear shifts and smaller inner radius of even gear shifts. Flow behaviors in the gap of the clutch pad are computed using the gear shift modes that consider the real relative velocities between the friction pad and separator. Flow behaviors in the gap of the disengaged clutch pad are mainly investigated for the wet-clutch system, whereas the engaged clutch pad is modeled with no fluid rate through the contacting surfaces. The developed hydrodynamic fluid pressures and velocity fields in the clutch pad gap are computed to obtain the relevant information for managing flow rates in wet-clutch packs under dual operating conditions during gear shifts. These hydrodynamic pressures and velocity fields are compared on the basis of each gear level and gap location, which is necessary to determine the effects of groove patterns on the friction pad. Shear stresses in the gap locations are also computed on the basis of the gear level for the inner and outer clutch pads. The computed results are compared and used for the design of cooling capacity against frictional heat generation in wet-clutch pack systems.

Frictional Heat Generation in Wet Clutch Engagement according to Groove Pattern on Clutch Pad (습식클러치 마찰재의 체결 거동에 의한 마찰열 해석)

  • Kim, HaeYong;Jang, Siyoul;Kim, WooJung
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.265-270
    • /
    • 2014
  • Frictional heat greatly influences the friction behaviors during clutch engagement. Therefore, the engagement of a wet or dry clutch is frequently not under control by the frictional heat. In a wet clutch, the frictional temperature also specially needs to be controlled, and in many cases, the clutch material is selected to prevent a temperature rise from the friction between friction pad and separator. However, only the selection of the clutch material cannot ensure sufficient control of the temperature rise by the friction. The groove pattern on a friction pad is designed for more flow rates of transmission fluid between the contact gap of clutch pad and separator for the cooling effect. In this work, grove patterns are designed for more flow rates out of the contact gap between friction pad and separator plate. Selected groove design shows the improvement flow rates of transmission fluid through both inner and outer radius, where most of the transmission fluid flows through the outer radius when the clutch is engaged due to the centrifugal force in conventional wet clutch groove. Several comparisons of the amounts of frictional heat generated on clutch pads are made in order to verify the decrease of the temperature rise according to the flow rates along the groove patterns.

Characteristic Dynamics Torque Vibration of Behavior in Wet Clutch Engagement for Dual Clutch Transmissions (듀얼클러치 변속기용 습식클러치 체결에 따른 토크 변화에 대한 동적거동)

  • Cho, Jaecheol;Kim, Woojung;Jang, Jaeduk;Jang, Siyoul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • Engine torque is transferred to the transmission where drag torque is minimized improving fuel efficiency. This is particularly true in a wet clutch pack. This study measures slip friction when the wet clutch pack in a DCT (Dual-Clutch Transmission) is disengaged, and the friction pads are slipping. Shudder engagement velocity, and applied forces can be measured under various working conditions through these torque transfer experiments. Test results demonstrate that the design parameters, and engagement conditions of wet clutch packs can be optimized to reduce shudder and frictional vibration during engagement in a dual clutch transmission.

Study of Locking Algorithms for a On/Off Multi-plate Clutch (동력절환용 클러치의 기계식 잠금장치 체결 알고리즘에 대한 연구)

  • Su Chul Kim;Jae Seung Kim;Sanggon Moon;Geun Ho Lee
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • The locking performance of a multi-plate clutch with a mechanical lock-up system is governed by the engagement algorithm. In this paper, a control algorithm to improve the locking performance of the clutch was studied. A 1D dynamic model was constructed and simulated according to the developed algorithm. The developed algorithm was composed of a method in which the locking device is engaged while generating artificial slip on the friction plate by controlling the piston pressure of the clutch. Furthermore, a case study of the parameters within the developed algorithm was conducted to explore combinations that maximize locking performance and analyze trends according to these parameters.

Analysis of Dynamic Behaviors of Transmission Fluid Film in Wet Clutch Pad according to Patterned Grooves (습식클러치 패드의 Groove 패턴에 의한 변속기유의 동적 거동)

  • Kim, Hae Yong;Jang, Siyoul;Kim, WooJung;Shin, Soon Cheol
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.92-98
    • /
    • 2014
  • Transmission fluid film behaviors in the gap between the wet clutch pad and separator plate are analyzed using the CFD software ADINA. Three pattern groove designs are selected and are used to validate the fluid film behaviors based on the outlet flow in the gap when the wet clutch pad and separator plate are engaged. The main design goal for pattern grooves is faster engagement. In most cases, much of the outlet flow of transmission fluid in the gap occurs on the outer radius boundary due to the centrifugal force generated by the clutch pad circular motion. Groove patterns are created to ensure faster transmission fluid outlet flow in the direction of the inner radius boundary. Computational results of the selected groove patterns are compared.

A Study on the Flow Path Position Design of Waviness Friction Pad for Drag Torque Reduction in Wet Type DCT (파형 습식클러치의 드래그 토크 저감을 위한 파형내 유로 위치 설정 설계 연구)

  • Cho, Junghee;Han, Juneyeol;Kim, Woojung;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Drag torque reduction in a wet clutch pack is a key aspect of the design process of the dual clutch transmission (DCT) system. In order to reduce the drag torque caused by lubricant shear resistance, recently developed wet clutch pack systems of DCT, as well as automatic transmission and other four-wheel drive (4WD) couplings, frequently utilize wavy wet clutch pads. Therefore, wavy shape of friction pad are made on the groove patterns like waffle pattern for the reduction of drag torque. Additionally, the groove patterns are designed with larger channels at several locations on the friction pad to facilitate faster outflow of lubricant. However, channel performance is a function of the waviness of the friction pad at the location of the particular channel. This is because the discharge sectional area varies according to the waviness amplitude at the location of the particular channel. The higher location of the additional channel on the friction pad results in a larger cross-sectional area, which allows for a larger flow discharge rate. This results in reduction of the drag torque caused by the shear resistance of DCTF, because of marginal volume fraction of fluid (VOF) in the space between the friction pad and separator. This study computes the VOF in the space between the friction pad and separator, the hydrodynamic pressure developed, and the shear resistance of friction torque, by using CFD software (FLUENT). In addition, the study investigates the dependence of these parameters on the location and waviness amplitude of the channel pattern on the friction pad. The paper presents design guidelines on the proper location of high waviness amplitude on wavy friction pads.

Optimal Design of Multi-Plate Clutch Featuring MR Fluid (MR 유체를 적용한 Multi-Plate Clutch의 최적설계)

  • Park, Jin-Young;Kim, Young-Choon;Oh, Jong-Seok;Jeon, Jae-Hoon;Jeong, Jun-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2020
  • 4WD technology is being actively applied to passenger cars. Therefore, dry multi-plate clutches are used for transfer cases. On the other hand, dry clutches have problems related to large vibrations and poor ride quality. To solve this problem, this paper proposes a multi-plate clutch with an MR fluid. When fastening the multi-plate clutch in the transfer case, the proposed MR clutch was applied to reduce the shock and friction, which is a key component in a four-wheel-drive system. MR multi-plate clutch has a fluid coupling mode and a compression mode. A torque model equation was derived for the optimal design. The analysis was performed using Ansys Maxwell to optimize the design parameters of the multi-plate clutch. Electromagnetic field analysis confirmed the strength of the magnetic field when the number of disks and plates were changed, and the maximum strength of the magnetic field was 0.45 Tesla. By applying this to the torque equation, the spacing between the plates was 2 mm, and the inner and outer diameters of the plates were selected to be 45 mm and 55 mm, respectively. Overall, this paper proposes an optimal design technique to maximize the performance of an MR multi-plate clutch.

A Study on the Transmitted Torque of Self Clamping Friction Clutch (자기 체결 마찰 클러치의 전달 토크에 관한 연구)

  • Wang, Jee-Seok;Kim, Jong-Do;Yoon, Hee-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1149-1156
    • /
    • 2008
  • The principle of self clamping friction clutch is presented in this paper and the transmitted torque capacity is also calculated. In order to enlarge the friction force, a part of rotating force of driving side is converted to normal force of friction materials by clamping arm. The increased normal force of friction materials assures the large friction force and the transmitted torque capacity of clutch becomes large. The self clamping friction clutch is adopted in the tube type air pressure clutch and the condition of stability is investigated. It is proven that the inclined angle of clamping arm and the friction factor of friction materials are the essential elements in stability and torque capacity of self clamping friction clutch. The transmitted torque capacity of self clamping friction clutch is compared with air pressure clutch. The normal force of friction lining is magnified by 1/(1-k) and the transmitted torque capacity is also magnified with same proportion comparing with air pressure clutch. The larger the friction factor of friction lining, the larger the magnification factor. The longer the clamping arm, the smaller the magnification factor. It must be also noted that the value of k=${\mu}Y/X$ is the criterion of stability. If the value of k=${\mu}Y/X$ is greater than or equal to 1, the self clamping friction clutch is unstable and it can not be used as clutch.

A Study on the Wet Clutch Pattern Design for the Drag Torque Reduction in Wet DCT System (습식 DCT의 드래그 토크 저감을 위한 클러치 패드 유로 설계)

  • Cho, Junghee;Han, Juneyeol;Kim, Woo-Jung;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • The drag torque in the wet clutch system of a dual clutch transmission system is investigated because it is relatively high, up to 10 of the total output torque of the engine, even when the clutch is in the disengagement state with zero torque transfer. Drag torque results from the shear resistance of the DCTF between the friction pad and separator plate. To reduce the drag torque for ensuring fuel economy, the groove pattern of the wet clutch friction pad is designed to have a high flow rate through the pattern groove. In this study, four types of groove patterns on the friction pad are designed. The volume fraction of the DCTF (VOF) and hydrodynamic pressure developments in the gap between the friction pad and separator plate are computed to correlate with the computation of the drag torque. From the computational results, it is found that a high VOF and hydrodynamics increase the drag torque resulting from the shear resistance of the DCTF. Therefore, a patterned groove design should be used for increasing the flow rate to have more air parts in the gap to reduce the drag torque. In this study, ANSYS FLUENT is used to solve the flow analysis.