Data Mining is the process of finding hidden patterns inside a large data set. Cluster analysis has been used as a popular technique for data mining. It is a fundamental process of data analysis and it has been Playing an important role in solving many problems in pattern recognition and image processing. If fuzzy cluster analysis is to make a significant contribution to engineering applications, much more attention must be paid to fundamental decision on the number of clusters in data. It is related to cluster validity problem which is how well it has identified the structure that Is present in the data. In this paper, we design an adaptive data mining model using fuzzy performance measures. It discovers clusters through an unsupervised neural network model based on a fuzzy objective function and evaluates clustering results by a fuzzy performance measure. We also present the experimental results on newsgroup data. They show that the proposed model can be used as a document classifier.
Journal of the Korean Institute of Intelligent Systems
/
v.6
no.3
/
pp.81-88
/
1996
Cluster analysis is based on partitioning a collection of data points into a number of clusters, where the data
points in side a cluster have a certain degree of similarity and it is a fundamental process of data analysis. So, it
has been playing an important role in solving many problems in pattern recognition and image processing. For
these many clustering algorithms depending on distance criteria have been developed and fuzzy set theory has been
introduced to reflect the description of real data, where boundaries might be fuzzy. If fuzzy cluster analysis is tomake a significant contribution to engineering applications, much more attention must be paid to fundamental
questions of cluster validity problem which is how well it has identified the structure that is present in the data.
Several validity functionals such as partition coefficient, claasification entropy and proportion exponent, have been
used for measuring validity mathematically. But the issue of cluster validity involves complex aspects, it is difficult
to measure it with one measuring function as the conventional study. In this paper, we propose four performance
indices and the way to measure the quality of clustering formed by given learning strategy.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.25-27
/
2001
진화 알고리즘에서 고려할 사항 중 하나는 문제와 관련 있는 진화연산 즉, 교배 연산과 돌연변이 연산을 정의하는 것이다. 일반적으로 교배 연산은 두 개체의 정보를 교환하는 재조합 연산으로써 진화의 속도를 촉진시키는 역할을 하고 돌연변이 인산은 개체집단의 다양성 을 유지시키는 역할을 한다. 그러나 이러한 진화연산자는 확률에 근거하여 모든 개체에 적용되는 맹목적인 연산이 가질 수 있는 진화시간 지연의 문제점을 갖는다. 본 논문에서는 맹목적 진화연산에 의한 진화 시간 지연을 해결하기 위해 휴리스틱 연산을 제안한다. 휴리스픽 연산은 문제의 특성에 맞지 않는 개체에만 적용되는 연산으로 진화 시간을 단축시킬 수 있다. 따라서 이러한 휴리스틱 연산의 타당성을 확인하기 위해 본 논문에서는 진화 알고리즘을 이용하여 최적의 클러스터 위치와 개수를 자동으로 찾아주는 문제에 클러스터의 특성을 고려한 휴리스틱 연산인 합병연산과 분할연산 그리고 K-means연산을 정의하여 다차원 실험데이터로 실험한 결과를 보이고 있다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.23
no.4
/
pp.1045-1050
/
1998
Classification techniques are often an importand component of intelligent systems and are use for both deta preprocessing and decision making. In the design of a classification system, the labled samples must be given to provide a priori information for the classification. Moreover, the number of classes to be categorized must be known a priori information, called OFCAM. In OFCAM, an unsupervised by OFCAM, the database of a classification system, called PCSDB, is constructed. Then, PCSDB can be effectively used in the decision process of the system.
Journal of the Korea Society of Computer and Information
/
v.16
no.10
/
pp.197-203
/
2011
In this paper, a new cluster configuration process is proposed. The energy consumption of sensor nodes is reduced by configuring the initial setup process only once with keeping the initial cluster. Selecting the highest power consumed node of the member nodes within the cluster to the header of next round can distribute power consumption of all nodes in the cluster evenly. With this proposed way, the lifetime of the USN is increased by the reduced energy consumption of all nodes in the cluster. Also, evenly distributed power consumptions of sensors are designed to improve the energy hole problem. The effectiveness of the proposed algorithms is confirmed through simulations.
Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.442-444
/
2018
본 논문에서는 GA(Genetic Algorithm) 기반 점증적 입자모델(IGM: Incremental Granular Model)의 최적화 설계를 제안한다. IGM의 성능은 다양한 실세계 응용예제를 통해 성공적으로 연구되어져왔다. 그러나, IGM의 문제로 각 컨텍스트에서 동일한 클러스터 수가 사용되는 점과 전형적인 퍼지화 계수가 설정된다는 점이 있다. 이러한 문제를 해결하기 위해 IGM을 최적화하여 각 컨텍스트에서 클러스터 중심의 수와 퍼지화 계수를 최적화하는 설계 방법을 제시했다. 제안된 방법의 타당성을 확인하기 위해 Ecotect에서 시뮬레이션 한 12가지 건물 형태를 사용하여 에너지 효율 예측에 대한 실험을 수행하였고, 제안된 방법은 기존의 IGM보다 우수한 성능을 보이는 것을 확인했다.
Proceedings of the Korean Information Science Society Conference
/
2006.06a
/
pp.55-57
/
2006
k-medoid 클러스터링 알고리즘은 고정된 클러스터 수(k)를 가지고 실험하기 때문에 데이터에 대한 사전 지식이 없으면 올바른 분석이 어렵고, 클러스터 수를 변경하면서 여러 번 반복 실험하여 실험 결과에 대한 타당성을 조사해야 하기 때문에 데이터의 크기가 커질수록 시간 비용이 증가하는 단점이 생긴다. 본 논문에서는 k-medoid 클러스터링 알고리즘 분석에 있어서 가장 어려운 문제 중 하나인 적절한 클러스터 수 k를 사회 네트워크 분석 방법 중 매개중심 값을 이용하여 찾는 새로운 방법을 제안하고 이를 실제 마이크로 어레이 데이터에 적용하여 유전자 알고리즘에 기반한 k-medoid 클러스터링을 수행함으로써 좀 더 정확한 클러스터링 결과를 보인다.
Journal of the Institute of Convergence Signal Processing
/
v.9
no.4
/
pp.313-320
/
2008
The dynamic clustering technique has some problems regarding energy consumption. In the cluster configuration aspect the cluster structure must be modified every time the head nodes are re-selected resulting in high energy consumption. Also, there is excessive energy consumption when a cluster head node receives identical data from adjacent cluster sources nodes. This paper proposes a solution to the problems described above from the energy efficiency perspective. The round-robin cluster header(RRCH) technique, which fixes the initially structured cluster and sequentially selects duster head nodes, is suggested for solving the energy consumption problem regarding repetitive cluster construction. Furthermore, the issue of redundant data occurring at the cluster head node is dealt with by broadcasting metadata of the initially received data to prevent reception by a sensor node with identical data. A simulation experiment was performed to verify the validity of the proposed approach. The results of the simulation experiments were compared with the performances of two of the must widely used conventional techniques, the LEACH(Low Energy Adaptive Clustering Hierarchy) and HEED(Hybrid, Energy Efficient Distributed Clustering) algorithms, based on energy consumption, remaining energy for each node and uniform distribution. The evaluation confirmed that in terms of energy consumption, the technique proposed in this paper was 29.3% and 21.2% more efficient than LEACH and HEED, respectively.
The routing algorithm many used in the wireless sensor network features the clustering method to reduce the amount of data transmission from the energy efficiency perspective. However, the clustering method results in high energy consumption at the cluster head node. Dynamic clustering is a method used to resolve such a problem by distributing energy consumption through the re-selection of the cluster head node. Still, dynamic clustering modifies the cluster structure every time the cluster head node is re-selected, which causes energy consumption. In other words, the dynamic clustering approaches examined in previous studies involve the repetitive processes of cluster head node selection. This consumes a high amount of energy during the set-up process of cluster generation. In order to resolve the energy consumption problem associated with the repetitive set-up, this paper proposes the Round-Robin Cluster Header (RRCH) method that fixes the cluster and selects the head node in a round-robin method The RRCH approach is an energy-efficient method that realizes consistent and balanced energy consumption in each node of a generated cluster to prevent repetitious set-up processes as in the LEACH method. The propriety of the proposed method is substantiated with a simulation experiment.
The facility location problem is one of the traditional optimization problems. In this paper, we deal with the single source capacitated facility location problem (SSCFLP) and it is known as an NP-hard problem. Thus, it seems to be natural to use a heuristic approach such as evolutionary algorithms for solving the SSCFLP. This paper introduces a new efficient evolutionary algorithm for the SSCFLP. The proposed algorithm is devised by incorporating a general adaptive link adjustment evolutionary algorithm and three heuristic local search methods. Finally we compare the proposed algorithm with the previous algorithms and show the proposed algorithm finds optimum solutions at almost all middle size test instances and very stable solutions at larger size test instances.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.