• Title/Summary/Keyword: 클러스터 중심 왜곡

Search Result 2, Processing Time 0.014 seconds

Clustering Method for Reduction of Cluster Center Distortion (클러스터 중심 왜곡 저감을 위한 클러스터링 기법)

  • Jeong, Hye-C.;Seo, Suk-T.;Lee, In-K.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.354-359
    • /
    • 2008
  • Clustering is a method to classify the given data set with same property into several classes. To cluster data, many methods such as K-Means, Fuzzy C-Means(FCM), Mountain Method(MM), and etc, have been proposed and used. But the clustering results of conventional methods are sensitively influenced by initial values given for clustering in each method. Especially, FCM is very sensitive to noisy data, and cluster center distortion phenomenon is occurred because the method dose clustering through minimization of within-clusters variance. In this paper, we propose a clustering method which reduces cluster center distortion through merging the nearest data based on the data weight, and not being influenced by initial values. We show the effectiveness of the proposed through experimental results applied it to various types of data sets, and comparison of cluster centers with those of FCM.

Improved Density-Independent Fuzzy Clustering Using Regularization (레귤러라이제이션 기반 개선된 밀도 무관 퍼지 클러스터링)

  • Han, Soowhan;Heo, Gyeongyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Fuzzy clustering, represented by FCM(Fuzzy C-Means), is a simple and efficient clustering method. However, the object function in FCM makes clusters affect clustering results proportional to the density of clusters, which can distort clustering results due to density difference between clusters. One method to alleviate this density problem is EDI-FCM(Extended Density-Independent FCM), which adds additional terms to the objective function of FCM to compensate for the density difference. In this paper, proposed is an enhanced EDI-FCM using regularization, Regularized EDI-FCM. Regularization is commonly used to make a solution space smooth and an algorithm noise insensitive. In clustering, regularization can reduce the effect of a high-density cluster on clustering results. The proposed method converges quickly and accurately to real centers when compared with FCM and EDI-FCM, which can be verified with experimental results.