Proceedings of the Korean Society for Information Management Conference
/
1999.08a
/
pp.25-28
/
1999
자동분류나 정보검색에 주로 이용되는 문헌 클러스터링에서는 문헌간의 유사성을 측정하기 위해 다양한 유사계수를 이용하는데, 모든 유사계수가 동일한 클러스터링 결과를 가져오는 것은 아니다. 본고에서는 50건의 신문기사를 대상으로 SPSS 통계 패키지를 이용하여 다양한 유사계수에 각각 달라지는 문헌 클러스터링의 결과를 살펴본 후, 유사계수간의 연관성을 측정하였다.
Journal of the Korean Society for information Management
/
v.21
no.1
/
pp.93-117
/
2004
This study is to develop a hierarchic clustering model fur document classification and browsing in OPAC systems. Two automatic indexing techniques (with and without controlled terms), two term weighting methods (based on term frequency and binary weight), five similarity coefficients (Dice, Jaccard, Pearson, Cosine, and Squared Euclidean). and three hierarchic clustering algorithms (Between Average Linkage, Within Average Linkage, and Complete Linkage method) were tested on the document collection of 175 books and theses on library and information science. The best document clusters resulted from the Between Average Linkage or Complete Linkage method with Jaccard or Dice coefficient on the automatic indexing with controlled terms in binary vector. The clusters from Between Average Linkage with Jaccard has more likely decimal classification structure.
Journal of the Korean Society for information Management
/
v.18
no.2
/
pp.203-230
/
2001
The purpose of this study is to develop a document clustering model for automatic classification of knowledge. Two test collections of newspaper article texts and journal article abstracts are built for the clustering experiment. Various feature reduction criteria as well as term weighting methods are applied to the term sets of the test collections, and cosine and Jaccard coefficients are used as similarity measures. The performances of complete linkage and K-means clustering algorithms are compared using different feature selection methods and various term weights. It was found that complete linkage clustering outperforms K-means algorithm and feature reduction up to almost 10% of the total feature sets does not lower the performance of document clustering to any significant extent.
Proceedings of the Korean Society for Information Management Conference
/
2000.08a
/
pp.45-50
/
2000
자동분류나 정보검색에 활용되는 문헌 클러스터링 결과의 성능을 평가하는 방법에는 여러가지가 있다. 본 논문에서는 제시된 몇 가지 평가방법의 개념과 특징에 대해 알아본다 학술논문 초록 집합인 KTSET과 신문기사 집합인 KFCM-CL을 대상으로 각각 유사계수를 변화시켜가며 클러스터링한 결과에 대해 각 평가방법을 적응해본 후, 특징과 문제점을 살려 보았다.
Proceedings of the Korean Society for Information Management Conference
/
2005.08a
/
pp.65-70
/
2005
계층적 문서 클러스터링에 있어서 실험집단에 따라 응집식 기법과 분할식 기법의 성능이 다르며, 이를 좌우하는 요소는 분류의 깊이, 즉 분류수준이라고 가정하였다. 조금만 나누면 되는 대분류인 경우는 상대적으로 분할식 기법이 유리하고, 조금만 합치면 되는 소분류인 경우에는 응집식 기법이 유리할 것이라고 판단했기 때문이다. 그에 따라 분할식 클러스터링 기법인 양분(Bisecting) K-means기법과 응집식 기법인 완전연결, 평균연결, WARD기법의 성능을 실험집단이 대분류인 경우와 소분류인 경우의 유사계수를 적용하여 각 기법별 성능을 비교하여 실험집단의 특성에 따른 적합 클러스터링 기법을 찾고자 하였다. 실험결과 응집식 기법과 분할식 기법의 성능 우열에 영향을 미치는 것은 분류수준보다는 변이계수로 측정된 상대적인 군집의 크기 편차인 것으로 나타났다.
Journal of the Korean Society for information Management
/
v.23
no.3
s.61
/
pp.147-165
/
2006
In this study, experiments for selection of association terms were conducted in order to discover the optimum method in selecting additional terms that are related to an initial query term. Association term sets were generated by using support, confidence, and lift measures of the Apriori algorithm, and also by using the similarity measures such as GSS, Jaccard coefficient, cosine coefficient, and Sokal & Sneath 5, and mutual information. In performance evaluation of term selection methods, precision of association terms as well as the overlap ratio of association terms and relevant documents' indexing terms were used. It was found that Apriori algorithm and GSS achieved the highest level of performances.
Journal of the Korean Society for Library and Information Science
/
v.38
no.1
/
pp.35-50
/
2004
This study evaluated the applicability of the static hierarchic clustering model to clustering query results in OPAC. Two clustering methods(Between Average Linkage(BAL) and Complete Linkage(CL)) and two similarity coefficients(Dice and Jaccard) were tested on the query results retrieved from 16 title-based keyword searchings. The precision of optimal dusters was improved more than 100% compared with title-word searching. There was no difference between similarity coefficients but clustering methods in optimal cluster effectiveness. CL method is better in precision ratio but BAL is better in recall ratio at the optimal top-level and bottom-level clusters. However the differences are not significant except higher recall ratio of BAL at the top-level duster. Small number of clusters and long chain of hierarchy for optimal cluster resulted from BAL could not be desirable and efficient.
In this paper we propose Fourier magnitudes based privacy preserving clustering on time-series data. The previous privacy-preserving method, called DFT coefficient method, has a critical problem in privacy-preservation itself since the original time-series data may be reconstructed from privacy-preserved data. In contrast, the proposed DFT magnitude method has an excellent characteristic that reconstructing the original data is almost impossible since it uses only DFT magnitudes except DFT phases. In this paper, we first explain why the reconstruction is easy in the DFT coefficient method, and why it is difficult in the DFT magnitude method. We then propose a notion of distance-order preservation which can be used both in estimating clustering accuracy and in selecting DFT magnitudes. Degree of distance-order preservation means how many time-series preserve their relative distance orders before and after privacy-preserving. Using this degree of distance-order preservation we present greedy strategies for selecting magnitudes in the DFT magnitude method. That is, those greedy strategies select DFT magnitudes to maximize the degree of distance-order preservation, and eventually we can achieve the relatively high clustering accuracy in the DFT magnitude method. Finally, we empirically show that the degree of distance-order preservation is an excellent measure that well reflects the clustering accuracy. In addition, experimental results show that our greedy strategies of the DFT magnitude method are comparable with the DFT coefficient method in the clustering accuracy. These results indicate that, compared with the DFT coefficient method, our DFT magnitude method provides the excellent degree of privacy-preservation as well as the comparable clustering accuracy.
Cellular Genetic Algorithms(CGAs) are a subclass of Genetic Algorithms(GAs) in which each individuals are placed in a given geographical distribution. In general, CGAs# population space is a regular network that has relatively long characteristic path length and high clustering coefficient in the view of the Networks Theory. Long average path length makes the genetic interaction of remote nodes slow. If we have the population#s path length shorter with keeping the high clustering coefficient value, CGAs# population space will converge faster without loss of diversity. In this paper, we propose Smallest-Small-World Cellular Genetic Algorithms(SSWCGAs). In SSWCGAs, each individual lives in a population space that is highly clustered but having shorter characteristic path length, so that the SSWCGAs promote exploration of the search space with no loss of exploitation tendency that comes from being clustered. Some experiments along with four real variable functions and two GA-hard problems show that the SSWCGAs are more effective than SGAs and CGAs.
Journal of the Korean Society for Library and Information Science
/
v.43
no.3
/
pp.399-416
/
2009
In this study, clustering methods with related tags were discussed for improving search and exploration in the tag space. The experiments were performed on 10 Delicious tags and the strongly-related tags extracted by each 300 documents, and hierarchical and non-hierarchical clustering methods were carried out based on the tag co-occurrences. To evaluate the experimental results, cluster relevance was measured. Results showed that Ward's method with cosine coefficient, which shows good performance to term clustering, was best performed with consistent clustering tendency. Furthermore, it was analyzed that cluster membership among related tags is based on users' tagging purposes or interest and can disambiguate word sense. Therefore, tag clusters would be helpful for improving search and exploration in the tag space.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.