• Title/Summary/Keyword: 클러스터링모형

Search Result 60, Processing Time 0.023 seconds

An Empirical Study on the Measurement of Clustering and Trend Analysis among the Asian Container Ports Using the Variable Group Benchmarking and Categorical Variable Models (가변 그룹 벤치마킹 모형과 범주형 변수모형을 이용한 아시아 컨테이너항만의 클러스터링측정 및 추세분석에 관한 실증적 연구)

  • Park, Rokyung
    • Journal of Korea Port Economic Association
    • /
    • v.29 no.1
    • /
    • pp.143-175
    • /
    • 2013
  • The purpose of this paper is to show the clustering trend by using the variable group benchmarking(VGB) and categorical variable(CV) models for 38 Asian ports during 9 years(2001-2009) with 4 inputs(birth length, depth, total area, and number of crane) and 1 output(container TEU). The main empirical results of this paper are as follows. First, clustering results by using VGB show that Shanghai, Qingdao, and Ningbo ports took the core role for clustering. Second, CV analysis focusing on the container throughputs indicated that Singapore, Keelong, Dubai, and Kaosiung ports except Chinese ports are appeared as the center ports of clustering. Third, Aqaba, Dubai, Hongkong, Shanghai, Guangzhou, and Ningbo ports are recommended as the efficient ports for the target of clustering. Fourth, when the ports are classified by the regional location, Dubai, Khor Fakkan, Shanghai, Hongkong, Keelong, Ningbo, and Singapore ports are the core ports for clustering. On the whole, other ports located in Asia should be clustered to Dubai, Khor Fakkan, Shanghai, Hongkong, Ningbo, and Singapore ports. The policy implication of this paper is that Korean port policy planner should introduce the VGB model, and CV model for clustering among the international ports for enhancing the efficiency of inputs and outputs.

An Empirical Comparative Study on the Clustering Measurement Using Fuzzy(Average Index Transformation) DEA and Cross-efficiency Models (퍼지(평균지수변환)DEA모형과 교차효율성모형을 이용한 클러스터링측정에 대한 실증적 비교연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.1
    • /
    • pp.85-110
    • /
    • 2015
  • The purpose of this paper is to show the clustering trend and the empirical comparison and to choose the clustering ports for 3 Korean ports(Busan, Incheon and Gwangyang Ports) by using the Fuzzy(Average Index Transformation) DEA and Cross-efficiency models for 38 Asian ports during 11 years(2001-2011) with 4 input variables(birth length, depth, total area, and number of crane) and 1 output variable(container TEU). The main empirical results of this paper are as follows. First, clustering results by using Fuzzy(AIT)DEA show that 3 Korean ports[Busan(56.29%), Incheon(57.96%), and Gwangyang(66.80%) each]can increase the efficiency. Second, according to Cross-efficiency model, Busan(Hongkong, Kobe, Manila, Singapore, and Kaosiung etc.), Incheon(Aquaba, Dammam, Karachi, Mohammad Byin Oasim and Davao), and Gwangyang(Damman, Yokohama, Nogoya, Keelong, Kaosiung, and Bangkok) should be clustered with those ports in parentheses. Third, when both Fuzzy(AIT)DEA and Cross-efficiency models are mixed, the empirical result shows that 3 Korean ports[Busan(71.38%), Incheon(103.89%), and Gwangyang(168.55%) each]can increase the efficiency. The efficiency ranking comparison among the three models by using Wilcoxon Signed-rank Test was matched with the average level of 66%-67%. The policy implication of this paper is that Korean port policy planner should introduce the Fuzzy(AIT)DEA, and Cross-efficiency models with the mixed two models when clustering is needed among the Asian ports for enhancing the efficiency of inputs and outputs. Also, the results of SWOT analysis among the clustering ports should be considered.

An Empirical Study on the Clustering Measurement and Trend Analysis among the Asian Ports Using the Context-dependent and Measure-specific Models (컨텍스트의존 모형 및 측정특유 모형을 이용한 아시아항만들의 클러스터링 측정 및 추세분석에 관한 실증적 연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.28 no.1
    • /
    • pp.53-82
    • /
    • 2012
  • The purpose of this paper is to show the clustering trend by using the context-dependent and measure-specific models for 38 Asian ports during 10 years(2001-2009) with 4 inputs and 1 output. The main empirical results of this paper are as follows. First, clustering results by using context-dependent and measure-specific models are same. Second, the most efficient clustering was shown among the Hong Kong, Singapore, Ningbo, Guangzhou, and Kaosiung ports. Third, Port Sultan Qaboos, Jeddah, and Aden ports showed the lowest level clustering. Fourth, ranking order of attractiveness is Guangzhou, Dubai, HongKong, Ningbo, and Shanghai, and the results of progressive scores confirmed that low level ports can increase their efficiency by benchmarking the upper level ports. Fifth, benchmark share showed that Dubai(birth length), and HongKong(port depth, total area, and no. of cranes) have affected the efficiency of the inefficient ports.

Development of a Clustering Model for Automatic Knowledge Classification (지식 분류의 자동화를 위한 클러스터링 모형 연구)

  • 정영미;이재윤
    • Journal of the Korean Society for information Management
    • /
    • v.18 no.2
    • /
    • pp.203-230
    • /
    • 2001
  • The purpose of this study is to develop a document clustering model for automatic classification of knowledge. Two test collections of newspaper article texts and journal article abstracts are built for the clustering experiment. Various feature reduction criteria as well as term weighting methods are applied to the term sets of the test collections, and cosine and Jaccard coefficients are used as similarity measures. The performances of complete linkage and K-means clustering algorithms are compared using different feature selection methods and various term weights. It was found that complete linkage clustering outperforms K-means algorithm and feature reduction up to almost 10% of the total feature sets does not lower the performance of document clustering to any significant extent.

  • PDF

An Empirical Study on the Measurement of Clustering and Trend Analysis among the Asian Container Ports Using Self Organizing Maps based on Neural Network and Tier Models (자기조직화지도 신경망 모형과 Tier 모형을 이용한 아시아컨테이너항만의 클러스터링측정 및 추세분석에 관한 실증적 연구)

  • Park, Rokyung
    • Journal of Korea Port Economic Association
    • /
    • v.30 no.1
    • /
    • pp.23-55
    • /
    • 2014
  • The purpose of this paper is to show the clustering trend and to choose the clustering ports for 3 Korean ports(Busan, Incheon and Gwangyang Ports) by using the self organizing maps based on neural network(SOM) and Tier models for 38 Asian ports during 11 years(2001-2011) with 4 input variables(birth length, depth, total area, and number of crane) and 1 output variable(container TEU). The main empirical results of this paper are as follows. First, clustering results by using SOM show that 3 Korean ports[Busan(26.5%), Incheon(13.05%), and Gwangyang(22.95%) each]can increase the efficiency. Second, according to Tier model, Busan(Hongkong, Sanghai, Manila, and Singapore), Incheon(Aden, Ningbo, Dabao, and Bangkog), and Gwangyang(Aden, Ningbo, Bangkog, Hipa, Dubai, and Guangzhou) should be clustered with those ports in parentheses. Third, when both SOM and Tier models are mixed, (1) efficiency improvement of Busan Port is greater than those of Incheon and Gwangyang ports. (2) Incheon port has shown the slow improvement during 2001-2007, but after 2008, improvement speed was high. (3) improvement level of Gwangyang port was high during 2001-2003, but after 2004, improvement level was constantly decreased. The policy implication of this paper is that Korean port policy planner should introduce the SOM, and Tier models with the mixed two models when clustering among the Asian ports for enhancing the efficiency of inputs and outputs.

A Study on the Asia Container Ports Clustering Using Hierarchical Clustering(Single, Complete, Average, Centroid Linkages) Methods with Empirical Verification of Clustering Using the Silhouette Method and the Second Stage(Type II) Cross-Efficiency Matrix Clustering Model (계층적 군집분석(최단, 최장, 평균, 중앙연결)방법에 의한 아시아 컨테이너 항만의 클러스터링 측정 및 실루엣방법과 2단계(Type II) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.31-70
    • /
    • 2021
  • The purpose of this paper is to measure the clustering change and analyze empirical results, and choose the clustering ports for Busan, Incheon, and Gwangyang ports by using Hierarchical clustering(single, complete, average, and centroid), Silhouette, and 2SCE[the Second Stage(Type II) cross-efficiency] matrix clustering models on Asian container ports over the period 2009-2018. The models have chosen number of cranes, depth, birth length, and total area as inputs and container TEU as output. The main empirical results are as follows. First, ranking order according to the efficiency increasing ratio during the 10 years analysis shows Silhouette(0.4052 up), Hierarchical clustering(0.3097 up), and 2SCE(0.1057 up). Second, according to empirical verification of the Silhouette and 2SCE models, 3 Korean ports should be clustered with ports like Busan Port[ Dubai, Hong Kong, and Tanjung Priok], and Incheon Port and Gwangyang Port are required to cluster with most ports. Third, in terms of the ASEAN, it would be good to cluster like Busan (Singapore), Incheon Port (Tanjung Priok, Tanjung Perak, Manila, Tanjung Pelpas, Leam Chanbang, and Bangkok), and Gwangyang Port(Tanjung Priok, Tanjung Perak, Port Kang, Tanjung Pelpas, Leam Chanbang, and Bangkok). Third, Wilcoxon's signed-ranks test of models shows that all P values are significant at an average level of 0.852. It means that the average efficiency figures and ranking orders of the models are matched each other. The policy implication is that port policy makers and port operation managers should select benchmarking ports by introducing the models used in this study into the clustering of ports, compare and analyze the port development and operation plans of their ports, and introduce and implement the parts which required benchmarking quickly.

A Brief Efficiency and Clustering Measurement Way of Containerport by Using the Game Cross-efficiency Model (게임교차효율성모형을 이용한 컨테이너항만의 효율성 및 클러스터링 측정방법 소고)

  • Park, Rokyung
    • Journal of Korea Port Economic Association
    • /
    • v.30 no.4
    • /
    • pp.151-168
    • /
    • 2014
  • The purpose of this paper is to show the brief efficiency and clustering measurement way by using the game cross-efficiency model which is newly introduced in this paper for 13 container ports during 3 years(2009, 2010, and 2013) with 3 input variables(depth, total area, and number of crane) and 1 output variable(container TEU). The main empirical results are as follows. First, the average rankings of game cross-efficiency model are Ningbo, Hongkong, Shanghai, Dubai, Singapore, Qingdao, Kaosiung, Busan, Tokyo, Incheon, Nagoya, Manila, Gwangyang ports in order. Second, according to ANOVA analysis, three models show the similar results in terms of the efficiency rankings. Third, in the clustering analysis using dendrogram, group A(Shangahi and Busan), group B(Ningbo and Nagoya), and group C(Incheon and Manila) show the common clustering ports during 3 or 2 years. The policy implication of this paper is that Korean port policy planner should introduce the game cross-efficiency method when measuring the individual port efficiency. Also port authority should consider the merits of the clustering ports for improving the port management and operations.

An Empirical Comparative Study of the Seaport Clustering Measurement Using Bootstrapped DEA and Game Cross-efficiency Models (부트스트랩 DEA모형과 게임교차효율성모형을 이용한 항만클러스터링 측정에 대한 실증적 비교연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.1
    • /
    • pp.29-58
    • /
    • 2016
  • The purpose of this paper is to show the clustering trend and the comparison of empirical results and is to choose the clustering ports for 3 Korean ports(Busan, Incheon and Gwangyang Ports) by using the bootstrapped DEA(Data Envelopment Analysis) and game Cross-efficiency models for 38 Asian ports during the period 2003-2013 with 4 input variables(birth length, depth, total area, and number of cranes) and 1 output variable(container TEU). The main empirical results of this paper are as follows. First, bootstrapped DEA efficiency of SW and LT is 0.7660, 0.7341 respectively. Clustering results of the bootstrapped DEA analysis show that 3 Korean ports [ Busan (6.46%), Incheon (3.92%), and Gwangyang (2.78%)] can increase the efficiency in the SW model, but the LT model shows clustering values of -1.86%, -0.124%, and 2.11% for Busan, Gwangyang, and Incheon respectively. Second, the game cross-efficiency model suggests that Korean ports should be clustered with Hong Kong, Shanghi, Guangzhou, Ningbo, Port Klang, Singapore, Kaosiung, Keelong, and Bangkok ports. This clustering enhances the efficiency of Gwangyang by 0.131%, and decreases that of Busan by-1.08%, and that of Incheon by -0.009%. Third, the efficiency ranking comparison between the two models using the Wilcoxon Signed-rank Test was matched with the average level of SW (72.83 %) and LT (68.91%). The policy implication of this paper is that Korean port policy planners should introduce the bootstrapped DEA, and game cross-efficiency models when clustering is needed among Asian ports for enhancing the efficiency of inputs and outputs. Also, the results of SWOT(Strength, Weakness, Opportunity, and Threat) analysis among the clustering ports should be considered.

An Empirical Comparison and Verification Study on the Seaport Clustering Measurement Using Meta-Frontier DEA and Integer Programming Models (메타프론티어 DEA모형과 정수계획모형을 이용한 항만클러스터링 측정에 대한 실증적 비교 및 검증연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.33 no.2
    • /
    • pp.53-82
    • /
    • 2017
  • The purpose of this study is to show the clustering trend and compare empirical results, as well as to choose the clustering ports for 3 Korean ports (Busan, Incheon, and Gwangyang) by using meta-frontier DEA (Data Envelopment Analysis) and integer models on 38 Asian container ports over the period 2005-2014. The models consider 4 input variables (birth length, depth, total area, and number of cranes) and 1 output variable (container TEU). The main empirical results of the study are as follows. First, the meta-frontier DEA for Chinese seaports identifies as most efficient ports (in decreasing order) Shanghai, Hongkong, Ningbo, Qingdao, and Guangzhou, while efficient Korean seaports are Busan, Incheon, and Gwangyang. Second, the clustering results of the integer model show that the Busan port should cluster with Dubai, Hongkong, Shanghai, Guangzhou, Ningbo, Qingdao, Singapore, and Kaosiung, while Incheon and Gwangyang should cluster with Shahid Rajaee, Haifa, Khor Fakkan, Tanjung Perak, Osaka, Keelong, and Bangkok ports. Third, clustering through the integer model sharply increases the group efficiency of Incheon (401.84%) and Gwangyang (354.25%), but not that of the Busan port. Fourth, the efficiency ranking comparison between the two models before and after the clustering using the Wilcoxon signed-rank test is matched with the average level of group efficiency (57.88 %) and the technology gap ratio (80.93%). The policy implication of this study is that Korean port policy planners should employ meta-frontier DEA, as well as integer models when clustering is needed among Asian container ports for enhancing the efficiency. In addition Korean seaport managers and port authorities should introduce port development and management plans accounting for the reference and clustered seaports after careful analysis.

A Study on Containerports Clustering Using Artificial Neural Network(Multilayer Perceptron and Radial Basis Function), Social Network, and Tabu Search Models with Empirical Verification of Clustering Using the Second Stage(Type IV) Cross-Efficiency Matrix Clustering Model (인공신경망모형(다층퍼셉트론, 방사형기저함수), 사회연결망모형, 타부서치모형을 이용한 컨테이너항만의 클러스터링 측정 및 2단계(Type IV) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구)

  • Park, Ro-Kyung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.757-772
    • /
    • 2019
  • The purpose of this paper is to measure the clustering change and analyze empirical results, and choose the clustering ports for Busan, Incheon, and Gwangyang ports by using Artificial Neural Network, Social Network, and Tabu Search models on 38 Asian container ports over the period 2007-2016. The models consider number of cranes, depth, birth length, and total area as inputs and container throughput as output. Followings are the main empirical results. First, the variables ranking order which affects the clustering according to artificial neural network are TEU, birth length, depth, total area, and number of cranes. Second, social network analysis shows the same clustering in the benevolent and aggressive models. Third, the efficiency of domestic ports are worsened after clustering using social network analysis and tabu search models. Forth, social network and tabu search models can increase the efficiency by 37% compared to that of the general CCR model. Fifth, according to the social network analysis and tabu search models, 3 Korean ports could be clustered with Asian ports like Busan Port(Kobe, Osaka, Port Klang, Tanjung Pelepas, and Manila), Incheon Port(Shahid Rajaee, and Gwangyang), and Gwangyang Port(Aqaba, Port Sulatan Qaboos, Dammam, Khor Fakkan, and Incheon). Korean seaport authority should introduce port improvement plans by using the methods used in this paper.