• Title/Summary/Keyword: 클러스터기반 기법

Search Result 536, Processing Time 0.027 seconds

SIRMS Techniques for Improving Performance and Scalability in a Mail Server (메일 서버의 성능과 확장성 향상을 위한 SIRMS 기법)

  • 송영호;권택근
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.727-729
    • /
    • 2001
  • 최근 전자 메일에서 여러 타입의 데이터를 지원함으로 인하여 메일의 용량이 커지고, 사용자는 다양한 통신 단말을 통하여 메일을 송수신하고 있어 메일 서버의 용량 및 처리 성능에 대한 고속화의 요구가 활발하다. 따라서 이러한 요구에 부흥하기 위한 새로운 기법으로 본 논문은 소스 IP 라우팅과 저렴한 PC의 클러스터를 기반으로 하는 메일 서버를 구현하여 메일 서버의 성능과 확장성을 실현할 수 있게되었다.

  • PDF

An Adaptive Regional Clustering Scheme Based on Threshold-Dataset in Wireless Sensor Networks for Monitoring of Weather Conditions (기상감시 무선 센서 네트워크에 적합한 Threshold-dataset 기반 지역적 클러스터링 기법)

  • Choi, Dong-Min;Shen, Jian;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1287-1302
    • /
    • 2011
  • Clustering protocol that is used in wireless sensor network is an efficient method that extends the lifetime of the network. However, when this method is applied to an environment in which collected data of the sensor node easily overlap, sensor nodes unnecessarily consumes energy. In the case of clustering technique that uses a threshold, the lifetime of the network is extended but the degree of accuracy of collected data is low. Therefore it is hard to trust the data and improvement is needed. In addition, it is hard for the clustering protocol that uses multi-hop transmission to normally collect data because the selection of a cluster head node occurs at random and therefore the link of nodes is often disconnected. Accordingly this paper suggested a cluster-formation algorithm that reduces unnecessary energy consumption and that works with an alleviated link disconnection. According to the result of performance analysis, the suggested method lets the nodes consume less energy than the existing clustering method and the transmission efficiency is increased and the entire lifetime is prolonged by about 30%.

Research on An Energy Efficient Triangular Shape Routing Protocol based on Clusters (클러스터에 기반한 에너지 효율적 삼각모양 라우팅 프로토콜에 관한 연구)

  • Nurhayati, Nurhayati;Lee, Kyung-Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.115-122
    • /
    • 2011
  • In this paper, we propose an efficient dynamic workload balancing strategy which improves the performance of high-performance computing system. The key idea of this dynamic workload balancing strategy is to minimize execution time of each job and to maximize the system throughput by effectively using system resource such as CPU, memory. Also, this strategy dynamically allocates job by considering demanded memory size of executing job and workload status of each node. If an overload node occurs due to allocated job, the proposed scheme migrates job, executing in overload nodes, to another free nodes and reduces the waiting time and execution time of job by balancing workload of each node. Through simulation, we show that the proposed dynamic workload balancing strategy based on CPU, memory improves the performance of high-performance computing system compared to previous strategies.

A Research on Low-power Buffer Management Algorithm based on Deep Q-Learning approach for IoT Networks (IoT 네트워크에서의 심층 강화학습 기반 저전력 버퍼 관리 기법에 관한 연구)

  • Song, Taewon
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2022
  • As the number of IoT devices increases, power management of the cluster head, which acts as a gateway between the cluster and sink nodes in the IoT network, becomes crucial. Particularly when the cluster head is a mobile wireless terminal, the power consumption of the IoT network must be minimized over its lifetime. In addition, the delay of information transmission in the IoT network is one of the primary metrics for rapid information collecting in the IoT network. In this paper, we propose a low-power buffer management algorithm that takes into account the information transmission delay in an IoT network. By forwarding or skipping received packets utilizing deep Q learning employed in deep reinforcement learning methods, the suggested method is able to reduce power consumption while decreasing transmission delay level. The proposed approach is demonstrated to reduce power consumption and to improve delay relative to the existing buffer management technique used as a comparison in slotted ALOHA protocol.

A Technique for Detecting Companion Groups from Trajectory Data Streams (궤적 데이터 스트림에서 동반 그룹 탐색 기법)

  • Kang, Suhyun;Lee, Ki Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.473-482
    • /
    • 2019
  • There have already been studies analyzing the trajectories of objects from data streams of moving objects. Among those studies, there are also studies to discover groups of objects that move together, called companion groups. Most studies to discover companion groups use existing clustering techniques to find groups of objects close to each other. However, these clustering-based methods are often difficult to find the right companion groups because the number of clusters is unpredictable in advance or the shape or size of clusters is hard to control. In this study, we propose a new method that discovers companion groups based on the distance specified by the user. The proposed method does not apply the existing clustering techniques but periodically determines the groups of objects close to each other, by using a technique that efficiently finds the groups of objects that exist within the user-specified distance. Furthermore, unlike the existing methods that return only companion groups and their trajectories, the proposed method also returns their appearance and disappearance time. Through various experiments, we show that the proposed method can detect companion groups correctly and very efficiently.

Cause Diagnosis Method of Semiconductor Defects using Block-based Clustering and Histogram x2 Distance (블록 기반 클러스터링과 히스토그램 카이 제곱 거리를 이용한 반도체 결함 원인 진단 기법)

  • Lee, Young-Joo;Lee, Jeong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1149-1155
    • /
    • 2012
  • In this paper, we propose cause diagnosis method of semiconductor defects from semiconductor industrial images. Our method constructs feature database (DB) of defect images. Then, defect and input images are subdivided by uniform block. And the block similarity is measured using histogram kai-square distance after color histogram calculation. Then, searched blocks in each image are merged into connected objects using clustering. Finally, the most similar defect image from feature DB is searched with the defect cause by measuring cluster similarity based on features of each cluster. Our method was validated by calculating the search accuracy of n output images having high similarity. With n = 1, 2, 3, the search accuracy was measured to be 100% regardless of defect categories. Our method could be used for the industrial applications.

Frequent Itemset Creation using Bit Transaction Clustering in Data Mining (데이터 마이닝에서 비트 트랜잭션 클러스터링을 이용한 빈발항목 생성)

  • Kim Eui-Chan;Hwang Byung-Yeon
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.293-298
    • /
    • 2006
  • Many data are stored in database. For getting any information from many data, we use the query sentences. These information is basic and simple. Data mining method is various. In this paper, we manage clustering and association rules. We present a method for finding the better association rules, and we solve a problem of the existing association rules. We propose and apply a new clustering method to fit for association rules. It is not clustering of the existing distance basis or category basis. If we find association rules of each clusters, we can get not only existing rules found in all transaction but also rules that will be characteristics of clusters. Through this study, we can expect that we will reduce the number of many transaction access in large databases and find association of small group.

High-Performance Secret Sharing Scheme based on XOR for Distributed Storage Server in Cloud Computing (클라우드 컴퓨팅의 분산저장서버를 고려한 XOR기반의 고성능 비밀분산 기법)

  • Kim, Su-Hyun;Hong, In-Sik;Lee, Im-Yeong
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.556-559
    • /
    • 2013
  • 클라우드 컴퓨팅 환경에서는 사용자의 데이터를 수많은 분산서버를 이용하여 데이터를 암호화하여 저장한다. 구글, 야후 등 글로벌 인터넷 서비스 업체들은 인터넷 서비스 플랫폼의 중요성을 인식하고 자체 연구 개발을 수행, 저가 상용 노드를 기반으로 한 대규모 클러스터 기반의 클라우드 컴퓨팅 플랫폼 기술을 개발 활용하고 있다. 이와 같이 분산 컴퓨팅 환경에서 다양한 데이터 서비스가 가능해지면서 대용량 데이터의 분산관리가 주요 이슈로 떠오르고 있다. 한편, 대용량 데이터의 다양한 이용 형태로부터 악의적인 공격자나 내부 사용자에 의한 보안 취약성 및 프라이버시 침해가 발생할 수 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 XOR기반의 효율적인 분산 저장 및 복구 기법을 제안하였다.

User Authentication Scheme based on Secret Sharing for Distributed File System in Hadoop (하둡의 분산 파일 시스템 구조를 고려한 비밀분산 기반의 사용자 인증 기법)

  • Kim, Su-Hyun;Lee, Im-Yeong
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.740-743
    • /
    • 2013
  • 클라우드 컴퓨팅 환경에서는 사용자의 데이터를 수많은 분산서버를 이용하여 데이터를 암호화하여 저장한다. 구글, 야후 등 글로벌 인터넷 서비스 업체들은 인터넷 서비스 플랫폼의 중요성을 인식하고 자체 연구 개발을 수행, 저가 상용 노드를 기반으로 한 대규모 클러스터 기반의 클라우드 컴퓨팅 플랫폼 기술을 개발 활용하고 있다. 이와 같이 분산 컴퓨팅 환경에서 다양한 데이터 서비스가 가능해지면서 대용량 데이터의 분산관리가 주요 이슈로 떠오르고 있다. 한편, 대용량 데이터의 다양한 이용 형태로부터 악의적인 공격자나 내부 사용자에 의한 보안 취약성 및 프라이버시 침해가 발생할 수 있다. 특히, 하둡에서 데이터 블록의 권한 제어를 위해 사용하는 블록 접근 토큰에도 다양한 보안 취약점이 발생한다. 이러한 보안 취약점을 보완하기 위해 본 논문에서는 비밀분산 기반의 블록 접근 토큰 관리 기법을 제안한다.

A Cluster-Based Top-k Query Processing Algorithm in Wireless Sensor Networks (무선 센서 네트워크에서 클러스터 기반의 Top-k 질의 처리)

  • Yeo, Myung-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.306-313
    • /
    • 2009
  • Top-k queries are issued to find out the highest (or lowest) readings in many sensor applications. Many top-k query processing algorithms are proposed to reduce energy consumption; FILA installs a filter at each sensor node and suppress unnecessary sensor updates; PRIM allots priorities to sensor nodes and collects the minimal number of sensor reading according to the priorities. However, if many sensor reading converge into the same range of sensor values, it leads to a problem that many false positives are occurred. In this paper, we propose a cluster-based approach to reduce them effectively. Our proposed algorithm operates in two phases: top-k query processing in the cluster level and top-k query processing in the tree level. False positives are effectively filtered out in each level. Performance evaluations show that our proposed algorithm reduces about 70% false positives and achieves about 105% better performance than the existing top-k algorithms in terms of the network lifetime.