Journal of the Korea Society of Computer and Information
/
v.25
no.6
/
pp.1-8
/
2020
Communication between system modules is applied using the Modbus protocol in industrial sites including smart factories, industrial drones, building energy management systems, PLCs, ships, trains, and airplanes. The existing Modbus was used for serial communication, but the recent Modbus protocol is used for TCP/IP communication.The Modbus protocol supports RTU, TCP and ASCII, and implements and uses protocols in embedded systems. However, the transmission I/O devices for RTU, TCP, and ASCII-based protocols may differ. For example, RTU and ASCII communications transmit on a serial-based communication protocol, but in some cases, Ethernet TCP/IP transmission is required. In particular, since the C language (object-oriented) is used in embedded systems, the complexity of source code related to I/O registers increases. In this study, we designed software that can logically separate I/O functions from embedded devices, and designed the execution logic of each instance requiring I/O processing through a delegate class instance with Modbus RTU, TCP, and ASCII protocol generation. We designed and experimented with software that can separate communication I/O processing and logical execution logic for each instance.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.5
/
pp.7-14
/
2021
Tomato crops are highly affected by tomato diseases, and if not prevented, a disease can cause severe losses for the agricultural economy. Therefore, there is a need for a system that quickly and accurately diagnoses various tomato diseases. In this paper, we propose a system that classifies nine diseases as well as healthy tomato plants by applying various pretrained deep learning-based CNN models trained on an ImageNet dataset. The tomato leaf image dataset obtained from PlantVillage is provided as input to ResNet, Xception, and DenseNet, which have deep learning-based CNN architectures. The proposed models were constructed by adding a top-level classifier to the basic CNN model, and they were trained by applying a 5-fold cross-validation strategy. All three of the proposed models were trained in two stages: transfer learning (which freezes the layers of the basic CNN model and then trains only the top-level classifiers), and fine-tuned learning (which sets the learning rate to a very small number and trains after unfreezing basic CNN layers). SGD, RMSprop, and Adam were applied as optimization algorithms. The experimental results show that the DenseNet CNN model to which the RMSprop algorithm was applied output the best results, with 98.63% accuracy.
As damages to individuals, private sectors, and businesses increase due to newly occurring cyber attacks, the underlying network security problem has emerged as a major problem in computer systems. Therefore, NIDS using machine learning and deep learning is being studied to improve the limitations that occur in the existing Network Intrusion Detection System. In this study, a deep learning-based NIDS model study is conducted using the Convolution Neural Network (CNN) algorithm. For the image classification-based CNN algorithm learning, a discrete algorithm for continuity variables was added in the preprocessing stage used previously, and the predicted variables were expressed in a linear relationship and converted into easy-to-interpret data. Finally, the network packet processed through the above process is mapped to a square matrix structure and converted into a pixel image. For the performance evaluation of the proposed model, NSL-KDD, a representative network packet data, was used, and accuracy, precision, recall, and f1-score were used as performance indicators. As a result of the experiment, the proposed model showed the highest performance with an accuracy of 85%, and the harmonic mean (F1-Score) of the R2L class with a small number of training samples was 71%, showing very good performance compared to other models.
Urban expansion results in raising the temperature in the city, which can cause social, economic and physical damage. In order to prevent the urban heat island and reduce the urban land surface temperature, it is important to quantify the cooling effect of the features of the urban space. Therefore, in order to understand the relationship between each object of land cover and the land surface temperature in Seoul, the land cover map was classified into 6 classes. And the correlation and multiple regression analysis between land surface temperature and the area of objects, perimeter/area, and normalized difference vegetation index was analyzed. As a result of the analysis, the normalized difference vegetation index showed a high correlation with the land surface temperature. Also, in multiple regression analysis, the normalized difference vegetation index exerted a higher influence on the land surface temperature prediction than other coefficients. However, the explanatory power of the derived models as a result of multiple regression analysis was low. In the future, if continuous monitoring is performed using high-resolution MIR Image from KOMPSAT-3A, it will be possible to improve the explanatory power of the model. By utilizing the relationship between such various land cover types considering vegetation vitality of green areas with that of land surface temperature within urban spaces for urban planning, it is expected to contribute in reducing the land surface temperature in urban spaces.
Kim, Sungduk;Lee, Hojin;Chang, Hyungjoon;Dho, Hyonseung
Journal of the Korean GEO-environmental Society
/
v.22
no.8
/
pp.5-12
/
2021
Climate change caused by global warming increases the frequency of occurrence of super typhoons and causes various types of sediment disasters such as debris flows in the mountainous area. This study is to evaluate the behavior of debris flow according to the multiplier value of the precipitation characteristics and the quantity of debris flow according to the typhoon category. For the analysis of the debris flow, the finite difference method for time elapse was applied. The larger the typhoon category, the higher the peak value of the flow discharge of debris flow and the faster the arrival time. When the precipitation characteristic multiplier is large, the fluctuation amplitude is high and the bandwidth is wide. When the slope angle was steeper, water discharge increased by 2~2.5 times or more, and the fluctuation of the flow discharge of debris flow increased. All of the velocities of debris flow were included to the class of "Very rapid", and the distribution of the erosion or sedimentation velocity of debris flows showed that the magnitude of erosion increased from the beginning, large-scale erosion occurred, and flowed downstream. The results of this study will provide information for predicting debris flow disasters, structural countermeasures and establishing countermeasures for reinforcing resilience in vulnerable areas.
Data often include missing values due to various reasons. If the missing data mechanism is not MCAR, analysis based on fully observed cases may an estimation cause bias and decrease the precision of the estimate since partially observed cases are excluded. Especially when data include many variables, missing values cause more serious problems. Many imputation techniques are suggested to overcome this difficulty. However, imputation methods using parametric models may not fit well with real data which do not satisfy model assumptions. In this study, we review imputation methods using nonlinear models such as kernel, resampling, and spline methods which are robust on model assumptions. In addition, we suggest utilizing imputation classes to improve imputation accuracy or adding random errors to correctly estimate the variance of the estimates in nonlinear imputation models. Performances of imputation methods using nonlinear models are compared under various simulated data settings. Simulation results indicate that the performances of imputation methods are different as data settings change. However, imputation based on the kernel regression or the penalized spline performs better in most situations. Utilizing imputation classes or adding random errors improves the performance of imputation methods using nonlinear models.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.5
/
pp.493-498
/
2019
This study deals with the analysis of the technology association rules between CPC codes of the Internet of Things(IoT) patent, the core of the Fourth Industrial Revolution ICT-based technology. The association rules between CPC codes were extracted using R, an open source for data mining. To this end, we analyzed 369 of the 605 patents related to the Internet of Things filed with the Patent Office until July 2019, with a complex CPC code, up to the subclass-level. As a result of the technology association rules, CPC codes with high support were [H04W ${\rightarrow}$ H04L](18.2%), [H04L ${\rightarrow}$ H04W](18.2%), [G06Q ${\rightarrow}$ H04L](17.3%), [H04L ${\rightarrow}$ G06Q](17.3%), [H04W ${\rightarrow}$ G06Q](9.8%), [G06Q ${\rightarrow}$ H04W](9.8%), [G06F ${\rightarrow}$ H04L](7.9%), [H04L ${\rightarrow}$ G06F](7.9%), [G06F ${\rightarrow}$ G06Q](6.2%), [G06Q ${\rightarrow}$ G06F](6.2%). After analyzing the technology interconnection network, the core CPC codes related to technology association rules are G06Q and H04L. The results of this study can be used to predict future patent trends.
Choi, Han Sol;Byeon, Joo Hyung;Bang, Gun;Sim, Dong Gyu
Journal of Broadcast Engineering
/
v.24
no.3
/
pp.463-471
/
2019
This paper proposes a method for reducing the complexity of LIC (Local Illuminance Compensation) for bi-directional inter prediction. The LIC performs local illumination compensation using neighboring reconstruction samples of the current block and the reference block to improve the accuracy of the inter prediction. Since the weight and offset required for local illumination compensation are calculated at both sides of the encoder and decoder using the reconstructed samples, there is an advantage that the coding efficiency is improved without signaling any information. Since the weight and the offset are obtained in the encoding prediction step and the decoding step, encoder and decoder complexity are increased. This paper proposes two methods for low complexity LIC. The first method is a method of applying illumination compensation with offset only in bi-directional prediction, and the second is a method of applying LIC after weighted average step of reference block obtained by bidirectional prediction. To evaluate the performance of the proposed method, BD-rate is compared with BMS-2.0.1 using B, C, and D classes of MPEG standard experimental image under RA (Random Access) condition. Experimental results show that the proposed method reduces the average of 0.29%, 0.23%, 0.04% for Y, U, and V in terms of BD-rate performance compared to BMS-2.0.1 and encoding/decoding time is almost same. Although the BD-rate was lost, the calculation complexity of the LIC was greatly reduced as the multiplication operation was removed and the addition operation was halved in the LIC parameter derivation process.
In this paper, we propose a deep learning structure suitable for embedded system. The flame detection process of the proposed deep learning structure consists of four steps : flame area detection using flame color model, flame image classification using deep learning structure for flame color specialization, $N{\times}N$ cell separation in detected flame area, flame image classification using deep learning structure for flame shape specialization. First, only the color of the flame is extracted from the input image and then labeled to detect the flame area. Second, area of flame detected is the input of a deep learning structure specialized in flame color and is classified as flame image only if the probability of flame class at the output is greater than 75%. Third, divide the detected flame region of the images classified as flame images less than 75% in the preceding section into $N{\times}N$ units. Fourthly, small cells divided into $N{\times}N$ units are inserted into the input of a deep learning structure specialized to the shape of the flame and each cell is judged to be flame proof and classified as flame images if more than 50% of cells are classified as flame images. To verify the effectiveness of the proposed deep learning structure, we experimented with a flame database of ImageNet. Experimental results show that the proposed deep learning structure has an average resource occupancy rate of 29.86% and an 8 second fast flame detection time. The flame detection rate averaged 0.95% lower compared to the existing deep learning structure, but this was the result of light construction of the deep learning structure for application to embedded systems. Therefore, the deep learning structure for flame detection proposed in this paper has been proved suitable for the application of embedded system.
Journal of the Korean Recycled Construction Resources Institute
/
v.9
no.3
/
pp.303-310
/
2021
Cracks in bridges are important factors that indicate the condition of bridges and should be monitored periodically. However, a visual inspection conducted by a human expert has problems in cost, time, and reliability. Therefore, in recent years, researches to apply a deep learning model are started to be conducted. Deep learning requires sufficient data on the situations to be predicted, but bridge crack data is relatively difficult to obtain. In particular, it is difficult to collect a large amount of crack data in a specific situation because the shape of bridge cracks may vary depending on the bridge's design, location, and construction method. This study developed a crack detection model that generates and trains insufficient crack data through a Generative Adversarial Network. GAN successfully generated data statistically similar to the given crack data, and accordingly, crack detection was possible with about 3% higher accuracy when using the generated image than when the generated image was not used. This approach is expected to effectively improve the performance of the detection model as it is applied when crack detection on bridges is required, though there is not enough data, also when there is relatively little or much data f or one class.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.