• Title/Summary/Keyword: 크리프 예측

Search Result 197, Processing Time 0.024 seconds

Life Prediction and AE Evaluation of Pure or Cyclic Creep for Power Plant Materials ; Pure Creep and AE Evaluation (전력용 강재의 정적.동적 크리프의 상관성과 예측 및 AE평가(1); 정적 크리프와 AE평가)

  • 오세규;장홍근;송정근
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.76-84
    • /
    • 1998
  • In this 1st report, the relationship between pure creep properties and initial strain was studied and also its acoustic emission test was performed during creep test at 500, 600 and $700^{\circ}C$. And the applicability of the acoustic emission technique was investigated to analyze the quantitive relationship between all the pure properties (creep strength, creep repture time or creep life, steady state creep rate, total creep rate, creep strain, total creep strain, etc.) and the initial strains as well as to analyze AE properties during the pure creep loading condition.

  • PDF

Creep Properties of Aircraft Gas Turbine Materials in relation to Heat Treatment (항공기용 가스터빈 재료의 열처리에 따른 크리프 특성)

  • Kong, Yu-Sik;Oh, Sae-Kyoo;Park, No-Kwang
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.112-117
    • /
    • 1999
  • In this paper, the creep properties and creep life prediction by Larson-Miller Parameter method for Udimet 720 to be used for aircraft gas turbine engines or other high temperature components were presented at the elevated temperatures of 538, 649 and $704^{\circ}C$. It was confirmed experimentally and quantitatively that a creep life predictive equation at such various high temperatures was well derived by LMP.

  • PDF

Estimation of C(t)-Integral in Transient Creep Condition for Pipe with Crack Under Combined Mechanical and Thermal Stress (II) - Elastic-Plastic-Creep - (복합응력이 작용하는 균열 배관에 대한 천이 크리프 조건에서의 C(t)-적분 예측 (II) - 탄-소성-크리프 -)

  • Song, Tae-Kwang;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1065-1073
    • /
    • 2009
  • In this paper, the estimation method of C(t)-integral for combined mechanical and thermal loads is proposed for elastic-plastic-creep material via 3-dimensional FE analyses. Plasticity induced by initial loading makes relaxation rate different from those produced elastically. Moreover, the interactions between mechanical and thermal loads make the relaxation rate different from those produced under mechanical load alone. To quantify C(t)-integral for combined mechanical and thermal loads, the simplified formula are developed by modifying redistribution time in existing work done by Ainsworth et al..

Creep Behaviour of Al-Zn-Mg Ternary Aluminum Alloy (Al-Zn-Mg 3원계 알루미늄 합금의 크리프 거동)

  • 윤종호;황경충
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.203-208
    • /
    • 2004
  • To make practical applications of Al-Zn-Mg ternary aluminum alloy effectively in various field, a series of static creep tests under the 16 temperature-stress combination conditions had been performed. The creep tester with constant stress loading was designed and made by the authors and used in this study. The higher the creep temperature rose, the less the stress exponents became. The bigger the applied stresses became, the less values the creep strain activation energy showed. The life prediction constant of Larson-Miller parameter was calculated as about 2.3. In the fractography, the ductile fracture with dimples by intergranular breakage was primarily observed. We can make practical use of these test data in the design, the life prediction and the prevention of the accidents of the thermal facilities, etc.

Time-dependent Analysis of Reinforced and Prestressed Concrete Structures Incorporating Creep Recovery Function (크리프 회복 거동을 고려한 철근콘크리트 및 프리스트레스트 콘크리트 부재의 장기거동해석에 관한 연구)

  • Kim, Se-Hoon;Oh, Byung-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.279-288
    • /
    • 1999
  • The creep of concrete structures caused by variable stresses is generally calculated by step-by-step method based on the superposition of creep function. Although most practical application is carried out by this linear assumption. significant deviations between predictions and experiments have been observed when unloading takes place, that is. stress is reduced. This shows that the superposition of creep function does not describe accurately the effect of sustained compressive preload. The main purpose of this study is to propose a creep analysis model which is expressed with both creep function and creep recovery function where increase or decrease of stress is repeated. In these two function method, the creep behavior is modelled by using linear creep law for loading and creep recovery law for unloading. To apply two function method to time analysis of concrete structures, the calculation method of creep strain increment under varying stress is proposed. The calculation results based on the present method correlates very well with test data, but the conventional superposition method exhibits large deviation from test results. This paper provides a more accurate method for the time dependent analysis of concrete structures subjected to varying stress, i.e. increasing or decreasing stress. The present method may be efficiently employed in the revision of future concrete codes.

Degradation Quantification Method and Degradation and Creep Life Prediction Method for Nickel-Based Superalloys Based on Bayesian Inference (베이지안 추론 기반 니켈기 초합금의 열화도 정량화 방법과 열화도 및 크리프 수명 예측의 방법)

  • Junsang, Yu;Hayoung, Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • The purpose of this study is to determine the artificial intelligence-based degradation index from the image of the cross-section of the microstructure taken with a scanning electron microscope of the specimen obtained by the creep test of DA-5161 SX, a nickel-based superalloy used as a material for high-temperature parts. It proposes a new method of quantification and proposes a model that predicts degradation based on Bayesian inference without destroying components of high-temperature parts of operating equipment and a creep life prediction model that predicts Larson-Miller Parameter (LMP). It is proposed that the new degradation indexing method that infers a consistent representative value from a small amount of images based on the geometrical characteristics of the gamma prime phase, a nickel-base superalloy microstructure, and the prediction method of degradation index and LMP with information on the environmental conditions of the material without destroying high-temperature parts.

A Rheological Approach on the Predicting of Concrete Creep (유변학을 이용한 콘크리트 크리프 거동 예측)

  • Kwon, Ki-Yeon;Min, Kyung-Hwan;Kim, Yul-Hui;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.697-700
    • /
    • 2008
  • The object of this paper is to propose a logical prediction model of a concrete creep using rheology. Rheology is the study on the flow and stress relationship of matter under the influence of an applied stress. It is also estimated as an effective theory to describe concrete long-term deformations. According to a time dependency and a mechanism of occurrence, the proposed creep model was divided into four components, such as an elastic deformation, a long-term creep, a time dependent short-term creep and a time independent short-term creep. Evaluation on an actual creep deformation pattern by time passage confirmed these classification. In order to approve a rationality of the proposed model, most coefficients of each components were derived by the microprestresssolidification theory and design codes. Numerical approaches were also used when it was restricted within narrow limits. Finally, the proposed rheolgical model was verified by actual creep test results and compared with common methods.

  • PDF

Evaluation of Shrinkage and Creep Behavior of Low-Heat Cement Concrete (저열 시멘트 콘크리트의 건조수축 및 크리프 거동 평가)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Kim, Si-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • This study examined the long-term inelastic characteristics, including unrestrained shrinkage and creep, of low-heat cement concrete under different ambient curing temperatures. To achieve the designed compressive strength of 42MPa, water-to-binder ratios were selected to be 27.5, 30, and 32.5% for curing temperatures of 5, 20, and $40^{\circ}C$, respectively. Test results showed that the shrinkage strains of concrete mixtures tended to decrease with the decrease in curing temperature because of the delayed evaporation of internal capillary and gel waters. Meanwhile, creep strains were higher in concrete specimens under lower curing temperature due to the occurrence of the transition temperature creep. The design models of KCI provision gave better accuracy in comparison with test results than those of ACI 209, although a correction factor for low-heat cement needs to be established in the KCI provision.

A Study for Creep Effect of the Interfacial Adhesive Layer on the Behavior of Concrete with CFRP (탄소섬유시트로 보강된 콘크리트 구조물 경계면 재료의 크리프 영향 해석)

  • Park, Yong Deuk;Shin, Seung Kyo;Kang, Suk Hwa;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.221-228
    • /
    • 2010
  • External bonding of carbon fiber reinforced polymer (CFRP) sheets has been widely accepted as a popular method for strengthening of deteriorated RC structures. The long-term behavior of CFRP-strengthened RC structure is often affected by that of the interface between CFRP sheets and concrete. This study aims at applying a viscoelastic model to describe the creep behaviour of the adhesive layer bonding CFRP sheet to concrete, the CFRP-concrete interface. Reviews of available models on concrete creep behavior have been first carried out and then new FE analysis model is proposed. The proposed FE analysis model based on the maxwell model has been verified by previous experimental results. It is shown that the creep effect of interfacial adhesive layer is very important on the long-term behavior of concrete structures strengthened with CFRP.

Estimation of C(t) -Integral Under Transient Creep Conditions for a Cracked Pipe Subjected to Combined Mechanical and Thermal Loads Depending on Loading Conditions (열응력 및 기계응력이 작용하는 균열배관의 하중조건에 따른 천이 크리프 조건 C(t)-적분 평가)

  • Oh, Chang-Young;Song, Tae-Kwang;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.609-617
    • /
    • 2011
  • There is a trend towards the progressive use of higher operating temperatures and stresses to achieve improved efficiencies in power-generation equipment. It is important to perform the crack assessment under hightemperature and high-pressure conditions. The C(t)-integral is a key parameter in crack assessment for transient creep states. The estimation of the C(t)-integral is complex when considering the mechanical and thermal loads simultaneously. In this paper, we study estimation of C(t)-integral under combined mechanical and thermal load depending on loading conditions.