• Title/Summary/Keyword: 크리프 손상

Search Result 74, Processing Time 0.023 seconds

Evaluation on Laboratory Moisture Damage Characteristics of the Asphalt Mixtures using Indirect Tensile Test (간접인장시험을 이용한 아스팔트 혼합물의 실내 수분손상 특성 평가)

  • Hwang, Sung Do;Rhee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.243-248
    • /
    • 2008
  • Moisture damage of asphalt pavements can usually occur because of the loss of adhesion and cohesion between the asphalt binder and aggregate in the asphalt mixture due to presence of water. And this is one of the causes that is effect on the main distress of asphalt pavement. The objective of this study is to find out moisture damage characteristics of asphalt pavement. Effects of this study changes of the material properties and resistance characteristics of moisture damage on the asphalt mixtures under various temperatures and repeated immersion using indirect tensile test and modify Lottman test were evaluated during this study. The asphalt mixtures were produced using straight asphalt binder, SBS modified asphalt binder and aggregates. The material properties (resilient modulus, indirect tensile strength, failure energy and $DCSE_f$) of the asphalt mixtures were generally decreased with increasing to moisture damage caused by the number of repeated immersion. The decrease ratios of material properties by repeated immersion on SBS modified asphalt mixtures were lower than those of straight asphalt mixtures at all three test temperatures. As a conclusion, current criterion for evaluation moisture damage of asphalt mixtures is difficult for using distinction standard because of the limited evaluation criterion with one time immersion and single material property. Based on this research, to evaluate long term moisture damage on asphalt mixtures, material property tests of various kinds with repeated immersion test are considered.

A Study on Life Assessment for In-Service High-Temperature Components Using Image Processing Technique (컴퓨터 화상처리 기법을 이용한 고온 구조물의 수명평가 연구)

  • 김효진;정재진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.44-50
    • /
    • 1998
  • The creep life fraction can be evaluated by the degree of grain deformation since the grain of Cr-Mo base metal deforms in the direction of stress. The grain deformation method using image processing technique is developed for life assessment of in-service high-temperature components. The new assessment model of grain deformation method is presented to apply to in-service components and is verified by interrupted creep test for ex-serviced material of 1Cr-0.5Mo steel. The proposed model, which is irrespective of stress direction, is to evaluate mean of the absolute deviation for the measured ratios which are diametrical maximum to minimum dimensions for grains.

  • PDF

A Study on the Flexural Damage of RC Beams Under Fatigue Loading Using A Cyclic Creep Characteristics (반복크리프 특성을 이용한 피로하중을 받는 RC 보의 휨손상 연구)

  • 오병환;김동욱;홍경옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.365-370
    • /
    • 1998
  • The creep strain of the compression zone of concrete beams subjected to cyclic loading should be a significant factor in increasing strain and deflections. An analytical model which is similar to a previous one is presented to predict the increase in cyclic creep strain and the damage using the properties of the constituent materials: concrete and steel. The analytical expressions are compared with our experimental data. The effect of concrete-creep is accounted by the term En, Icr,n, and Mcr,n. In this study, it is proved that cyclic creep exponents 'n' in Cyclic Creep Model, according to the parameters -strength, range of stress- have the various values. It is hoped that with the availability of more experimental data and better understanding of some of the complex behavior, the model could be further improved.

  • PDF

Assessments of the Combined Effect of Installation Damage and Creep on the Long-Term Design Strength of Geogrid for Railroad Reinforcement (철도노반 보강용 지오그리드의 크리프 및 손상이 장기 인장강도에 미치는 영향평가)

  • Lee Do-Hee;Park Tae-Soon;Cho Sam-Deok;Lee Kwang-Wu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1156-1161
    • /
    • 2004
  • The factors affecting the long-term design strength of geogrid for railroad reinforcement can be classified into factors on creep deformation, installation damage, temperature, chemical degradation, biological degradation. Especially, creep deformation and installation damage are considered as main factors to determine the long-term design strength of geogrid. This paper describes the results of a series of experimental study, which are carried out to assess the combined effect of installation damage and creep deformation for the long-term design strength of geogrid reinforcement. In this study, a series of field tests are carried out to assess installation damage of a various geogrids according to different fill materials, and then creep tests are conducted to assess the creep properties of both undamaged and damaged geogrids.

  • PDF

High Temperature Fracture Mechanisms in Monolithic and Particulate Reinforced Intermetallic Matrix Composite Processed by Spray Atomization and Co-Deposition (분무성형공정에 의한 세라믹미립자 강화형 금속간화합물 복합재료의 고온파괴거동)

  • Chung, Kang;Kim, Doo-Hwan;Kim, Ho-Kyung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1713-1721
    • /
    • 1994
  • Intermetallic-matrix composites(IMCs) have the potential of combing matrix properties of oxidation resistance and high temperature stability with reinforcement properties of high specific strength and modulus. One of the major limiting factors for successful applications of these composite at high temperatures is the formation of interfacial reactions between matrix and ceramic reinforcement during composite process and during service. The purpose of the present investigation is to develop a better understanding of the nature of creep fracture mechanisms in a $Ni_{3}Al$ composite reinforced with both $TiB_{2}$ and SiC particulates. Emphasis is placed in the roles of the products of the reactions in determining the creep lifetime of the composite. In the present study, creep rupture specimens were tested under constant ranging from 180 to 350 MPa in vacuum at $760^{\cric}C$. The experimental data reveal that the stress exponent for power law creep for the composite is 3.5, a value close to that for unreinforced $Ni_{3}Al$. The microstructural observations reveal that most of the cavities lie on the grain boundaries of the $Ni_{3}Al$ matrix as opposed to the large $TiB_{2}/Ni_{3}Al$ interfaces, suggesting that cavities nucleate at fine carbides that lie in the $Ni_{3}Al$ grain boundaries as a result of the decomposition of the $SiC_{p}$. This observation accounts for the longer rupture times for the monolicthic $Ni_{3}Al$ as compared to those for the $Ni_{3}Al/SiC_{p}/TiB_{2} IMC$. Finally, it is suggested that creep deformation in matrix appears to dominate the rupture process for monolithic $Ni_{3}Al$, whereas growth and coalescence of cavities appears to dominate the rupture process for the composite.

A Numerical Model to Evaluate Fire-Resistant Capacity of the Reinforced Concrete Members (화재에 손상된 철근콘크리트 부재의 수치모델 및 내화성능해석)

  • Hwang, Jin-Wook;Ha, Sang-Hee;Lee, Yong-Hoon;Kim, Wha-Jung;Kwak, Hyo-Gyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.497-508
    • /
    • 2013
  • This paper introduces a numerical model which can evaluate the fire-resistant capacity of reinforced concrete members. On the basis of the transient heat transfer considering the heat conduction, convection and radiation, time-dependent temperature distribution across a section is determined. A layered fiber section method is adopted to consider non-linear material properties depending on the temperature and varying with the position of a fiber. Furthermore, effects of non-mechanical strains of each fiber like thermal expansion, transient strain and creep strain are reflected on the non-linear structural analysis to take into account the extreme temperature variation induced by the fire. Analysis results by the numerical model are compared with experimental data from the standard fire tests to validate an exactness of the introduced numerical model. Also, time-dependent changes in the resisting capacities of reinforced concrete members exposed to fire are investigated through the analyses and, the resisting capacities evaluated are compared with those determined by the design code.

The Study for Fracture in the First Stage Blade of Aircraft Engine (항공기엔진용 1단계 터빈블레이드에 대한 파손 연구)

  • Yoon, Youngwoung;Park, Hyoungkyu;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.806-813
    • /
    • 2018
  • The fracture of a turbine blade of aerospace engine is presented. Although there are a lot of causes and failure modes in blades, the main failure modes are two ways that fracture and fatigue. Degradation of blade material affects most failure modes. Total propagation of failure in this study specifies failure of fracture type. Some section appears fatigue mode. Especially since this study describes analysis of failure for blade in high temperature, it can be a case in point. Analysed blade is Ni super alloy. Investigations of blade are visual inspection, material, microstructure, high temperature stress rupture creep test, analysis and fracture surface, etc. The root cause for fracture was stress rupture due to abnormal thermal environment. Thermal property of Ni super alloy is excellent but if each chemical composition of alloys are different due to change mechanical properties, selection of material is very important.

Leak Detection and Evaluation for Power Plant Boiler Tubes Using Acoustic Emission (음향방출을 이용한 보일러튜브 누설평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Boiler tubes in power plants are often leaked due to various material degradations including creep and thermal fatigue damage under severe operating conditions such as high temperature and high pressure over an extended period of time. To monitor and diagnose the tubes on site and in real time, the acoustic emission (AE) technology was applied. We developed an AE leak detection system, and used it to study the variation of AE signal from the on-site tubes in response to the changes in the boiler operation condition and to detect the locations of leakage based on it. Detection of leak was performed by acquiring and evaluating the signals in separate regimes of high and low frequency signal. As a result of these studies, we found that on-line monitoring and detection of leak location for boiler tubes is possible using the developed system. Thus, the system is expected to contribute to the safe operation of power plants, and prevent economic losses due to potential leak.

Life Evaluation of Gas Turbine Engine Disk based on Retirement for Cause Concept (Retirement For Cause 개념에 의한 가스터빈 디스크 수명의 평가)

  • Nam, Seung-Hun;Park, Jong-Hwa;Kim, Jong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.365-373
    • /
    • 2002
  • For gas turbine engines, the safe life methodology has historically been used fur fatigue life management of failure critical engine components. The safe retirement limit is necessarily determined by a conservative life evaluation procedure, thereby many components which have a long residual life are discarded. The objective of this study is to introduce the damage tolerant design concept into the life management for aircraft engine component instead of conservative fatigue life methodology which has been used for both design and maintenance. Crack growth data were collected on a nickel base superalloy which have been subjected to combined static and cyclic loading at elevated temperatures. Stress analysis fur turbine disk was carried out. The program for computing creep-fatigue crack growth was developed. The residual lifes of turbine disk component under various temperatures and conditions using creep-fatigue crack growth data were estimated. As the result of analysis, it was confirmed that retirement fur cause concept was applicable to the evaluation of residual life of retired turbine disk which had been designed based on the conventional fatigue life methodology.

High-Temperature Mechanical Behaviors of Type 316L Stainless Steel (Type 316L 스테인리스강의 고온 기계적 거동)

  • Kim, Woo-Gon;Lee, Hyeong-Yeon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.92-99
    • /
    • 2020
  • High-temperature mechanical behaviors of Type 316L stainless steel (SS), which is considered as one of the major structural materials of Generation-IV nuclear reactors, were investigated through the tension and creep tests at elevated temperatures. The tension tests were performed under the strain rate of 6.67×10-4 (1/s) from room temperature to 650℃, and the creep tests were conducted under different applied stresses at 550℃, 600℃, 650℃, and 700℃. The tensile behavior was investigated, and the modeling equations for tensile strengths and elongation were proposed as a function of temperature. The creep behavior was analyzed in terms of various creep equations: Norton's power law, modified Monkman-Grant relation, damage tolerance factor(λ), and Z-parameter, and the creep constants were proposed. In addition, the tested tensile and creep strengths were compared with those of RCC-MRx. Results showed that creep exponent value decreased from n=13.55 to n=7.58 with increasing temperature, λ = 6.3, and Z-parameter obeyed well a power-law form of Z=5.79E52(σ/E)9.12. RCC-MRx showed lower creep strength and marginally different in creep strain rate, compared to the tested results. Same creep deformation was operative for dislocation movement regardless of the temperatures.