• Title/Summary/Keyword: 크리프균열성장

Search Result 37, Processing Time 0.02 seconds

A Study on Creep Crack Growth Properties of 308 SS for FFS Evaluation of High Temperature Components (고온설비의 FFS평가를 위한 308 스테인리스강의 크리프 균열성장 재료물성에 대한 연구)

  • Lee, Kyung-Yong;Baek, Un-Bong;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.5-10
    • /
    • 2002
  • For fitness-for-service evaluation of high temperature plant components with defects, crack growth life must be assessed properly as indicated in the recent draft of API 579 code. Type 308 stainless steel has been widely used as a field weld material in the petrochemical industry. In this study, creep crack data of type 308 stainless steel are collected and re-analyzed using $C_t$ as a characterizing fracture parameter. A unique da/dt versus $C_t$ relationship was obtained despite of difference of creep deformation constant of the reviewed materials and specimen geometry of the tested specimens. The obtained results can be employed for crack growth life assessment and fitness-for-service evaluation for the cracks in high temperature components. It is also argued that since the effect of creep properties and other material variability on the creep crack growth behavior would be minor the obtained model may be applied for most of the 308 stainless steels.

Evaluation of Creep Crack Growth Failure Probability at Weld Interface Using Monte Carlo Simulation (몬테카를로 모사에 의한 용접 계면에서의 크리프 균열성장 파손 확률 평가)

  • Lee Jin-Sang;Yoon Kee-Bong
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.61-66
    • /
    • 2005
  • A probabilistic approach for evaluating failure risk is suggested in this paper. Probabilistic fracture analyses were performed for a pressurized pipe of a Cr-Mo steel reflecting variation of material properties at high temperature. A crack was assumed to be located along the weld fusion line. Probability density functions of major variables were determined by statistical analyses of material creep and creep crack growth data measured by the previous experimental studies by authors. Distributions of these variables were implemented in Monte Carlo simulation of this study. As a fracture parameter for characterizing growth of a fusion line crack between two materials with different creep properties, $C_t$ normalized with $C^*$ was employed. And the elapsed time was also normalized with tT, Resultingly, failure probability as a function of operating time was evaluated fur various cases. Conventional deterministic life assessment result was turned out to be conservative compared with that of probabilistic result. Sensitivity analysis for each input variable was conducted to understand the most influencing variable to the analysis results. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

Estimation for the Distribution of Creep Crack Growth Coefficients by Probabilistic Assessment (확률적 방법에 의한 크리프 균열성장 계수의 분포 추정)

  • Lee, Sang-Ho;Yoon, Kee-Bong;Choe, Byung-Hak;Min, Doo-Sik;Ahn, Jong Seok;Lee, Gil Jae;Kim, Sun-Hwa
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.791-797
    • /
    • 2010
  • The creep crack growth rate (da/dt) of the Cr-Mo steels tested by pre-crack and the voltage (or resistance) variables were related into fracture parameter (Ct), crack growth coefficient (H), and an exponent (q) in the parts of Base, weld and HAZ. The fracture parameter (Ct) has various variables relating to the specimen and crack shape, applied stress, and creep strain curve. The H and q was inferred by OLS regression (ordinary least square method), and the H values were solved in statistics and probability assessment, which were attained fromPDF's distributions (probability density function). The HAZ part has the highest value of q by OLS regression and the widest distribution of H by PDF of WEIBULL, which means that the crack sensitivity of HAZ should be cautioned against the creep crack growth and failure.

Statistical Analysis for Creep Crack Growth Behavior of Modified 9Cr-1Mo Steel (Modified 9Cr-1Mo 강의 크리프 균열성장 거동에 관한 통계적 해석)

  • Jung, Ik-Hee;Kim, Woo-Gon;Yin, Song-Nan;Ryu, Woo-Seog;Kim, Seon-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.283-289
    • /
    • 2009
  • This paper dealt with a statistical analysis for evaluating the creep crack growth rate (CCGR) for Modified 9Cr-1Mo (ASTM Grade 91) steel. The CCGR data was obtained by the creep crack growth (CCG) tests conducted under various applied loads at $600^{\circ}C$. To obtain logically the B and q values used in the CCGR equation, three methods such as the least square fitting method (LSFM), the mean value method (MVM) and the probabilistic distribution method (PDM) were adopted and their CCGR lines were compared, respectively. In addition, a number of random variables were generated by using the Monte Carlo simulation (MCS), and the CCGR lines were predicted probabilistically. It was found that both the B and q coefficients followed a 2-parameter Weibull distribution well. In the case of the ranges of 10-90% for the probability variables, P(B, q), the CCGR lines were predicted. Fractographic study was conducted from the specimen after the CCG tests.

Effects of High Temperature Deformation and Thermal Exposure on Carbide Reaction Cast Alloy 738LC (고원변형과 열간노출에 따른 주조용 합금 738LC의 탄화물 분해거동 고찰)

  • Ju, Dong-Won;Jo, Chang-Yong;Kim, Du-Hyeon;Seo, Seong-Mun;Lee, Yeong-Chan
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.111-116
    • /
    • 2000
  • Fracture mode and carbide reactions of cast alloy 738LC during thermal exposure and creep at 816$^{\circ}C$/440MPa and 982$^{\circ}C$/152MPa were investigated. Crystallographic transgranular failure was observed in the specimen crept at 816$^{\circ}C$ due to shearing on the slip plane. Because selective oxidation at the grainboundaries which was exposed at the surface leads reduction in surface energy, however, early initiation of crack at the grainboundaries and intergranular failure were observed in the specimen crept at 982$^{\circ}C$/152MPa. As a result of decomposition of MC carbide at the tested temperatures, M(sub)23C(sub)6 carbide precipitated either on the grainboundaries or on the deformation band. The applied stress enhanced decomposition of MC. $\sigma$phase nucleated from Cr(sub)23C(sub)6 then grew to the ${\gamma}$+${\gamma}$\\` matrix. Precipitation of $\sigma$was accelerated by increasing temperature and applied stress.

  • PDF

Influences of Liquid Rubber on the Surfacial and Mechanical Properties of Epoxy Composites (에폭시 복합체의 표면 및 기계적 특성에 미치는 액상고무의 효과)

  • Choi, Sei-Young;Chu, Jeoung-Min;Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.113-123
    • /
    • 2008
  • Epoxy resins are thermoset polymers that exhibit good adhesion, creep resistance, heat resistance, and chemical resistance. These polymers, however, give poor resistance to crack propagation and low impact strength. In this study, epoxy/carboxyl-terminated butadiene acrylonitrile (CTBN) and epoxy/amine-terminated butadiene acrylonitrile (ATBN) composites were prepared with different ratio of CTBN and ATBN to improve low impact strength of epoxy resin. The impact strength of epoxy/elastomeric composites shows high values with increasting nonpolar surface free energy while the tensile strength and the glass transition are decreased. The highest surface free energy, impact strength observed when 15 phr CTBN and 15 phr ATBN added, respectively. It can be concluded that as liquid rubber to improve impact strength of epoxy resin, ATBN is more preferable to CTBN.

Potential of HAZ Property Improvement through Control of Grain Boundary Character in a Wrought Ni-based Superalloy (단련용 Ni기 초내열합금의 입계구조 제어를 통한 HAZ 특성 향상 가능성 고찰)

  • Hong, H.U.;Kim, I.S.;Choi, B.G.;Jeong, H.W.;Yoo, Y.S.;Jo, C.Y.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.43-43
    • /
    • 2009
  • 단련용 다결정 Ni기 초내열합금은 우수한 가공성, 내산화성, 고온특성 등으로 가스터빈 연소기, 디스크, 증기발생기 전열관 등 발전용 고온부품 소재에 널리 적용되고 있다. 최근 발전설비의 고효율화를 꾀하기 위해 작동 온도를 현격히 증가시키는 기술방향으로 발전하고 있고, 소재측면에서는 기존의 초내열합금 대비 고기능성을 확보할 수 있는 차세대 Ni기 초내열합금 개발이 유럽, 미국, 일본, 중국 등을 중심으로 활발히 이루어지고 있다. 이러한 소재의 고온강도 (온도수용성)를 향상시키기 위해서는 통상 규칙격자 금속간화합물인 $Ni_3(Al,Ti)-{\gamma}'$상의 분율을 증가시킬 수 있지만, ${\gamma}'$상분율이 증가할 경우 용접 및 후열처리 동안 용접열영향부 (HAZ)에서 액화균열이 발생할 가능성이 높아진다. 결정립계를 따라 발생하는 HAZ 액화균열은 입계특성에 의해 크게 영향을 받을 것으로 판단된다. 한편, 본 연구자들은 최근 입계 serration 현상을 단련용 합금에 도입시키는 특별한 열처리를 이론적 접근법을 통해 개발하였다. 형성된 파형입계는 결정학적인 관점에서 조밀 {111} 입계면을 갖도록 분해 (dissociation)되어 낮은 계면에너지를 갖게 됨을 확인하였으며, 입계형상 변화뿐만 아니라 탄화물 특성변화까지 유도하여 크리프 수명을 기존대비 약 40% 정도 향상시킴을 확인하였다. 이러한 직선형 입계 대비 'special boundary'로 간주되는 파형입계가 도입될 경우, HAZ 결정립크기 변화 및 액화거동에 미치는 영향을 고찰하고, 아울러 입계특성 제어가 용접성/용접부 품질 향상에 기여할 수 있는 가능성도 토의하고자 하였다. 본 연구에서는 재현 HAZ 열사이클 시험을 통해 미세구조를 정량적으로 비교하였다. 상대적으로 입계구조가 안정된 파형입계의 이동속도가 高계면 에너지를 갖는 직선형 입계보다 느려 HAZ 결정립 성장이 효과적으로 억제됨을 확인할 수 있었다. 입계 액화거동을 살펴보면, 두 시편 모두 $M_{23}C_6$, MC 등 입계탄화물 계면이 빠른 승온중 액화반응 (constitutional liquation)에 의해 입계가 액화되었으며, 이후 급냉에 의해 입계에 액상막이 존재한 흔적이 발견되었다. 최고온도별로 입계액화 폭/비율을 정량적으로 비교한 결과, 파형입계가 직선입계 대비 대체로 낮음을 확인할 수 있었으며, 때때로 액화되지 않고 잔존하는 입계 탄화물이 관찰되었다. 재현 HAZ 미세조직을 통해 Hot ductility 시험 결과를 유추하자면, 파형입계가 직선입계 보다 좁은 취성온도영역 (Brittle Temperature Range)을 나타낼 것으로 예상되어, 입계특성제어에 의해 Ni기 초내열합금의 용접성을 향상 가능성을 확인하였다.

  • PDF