• Title/Summary/Keyword: 크리깅 시스템

Search Result 49, Processing Time 0.027 seconds

The Improvement of the Rainfall Network over the Seomjinkang Dam Basin (섬진강댐 유역의 강우관측망 개량에 관한 연구)

  • Lee, Jae-Hyoung;Shu, Seung-Woon
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.143-152
    • /
    • 2003
  • This paper suggests the improvement of the Sumjinkang for the estimation of areal averages of heavy rainfall events based on the optimal network and three existing networks. The problem consists of minimizing an objective function which includes both the accuracy of the areal mean estimation as expressed by the Kriging variance and the economic cost of the data collection. The wellknown geostatistical variance-reduction method is used in combination with SATS which is an algorithm of minimization. At the first stage, two kinds of optimal solutions are obtained by two trade-off coefficients. One of them is a optimal solution, the other is an alternative. At the second stage, a quasi optimal network and a quasi alternative are suggested so that the existing raingages near to the selected optimal raingages are included in the two solutions instead of gages of new gages.

Assessment of Regional Seismic Vulnerability in South Korea based on Spatial Analysis of Seismic Hazard Information (공간 분석 기반 지진 위험도 정보를 활용한 우리나라 지진 취약 지역 평가)

  • Lee, Seonyoung;Oh, Seokhoon
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.573-586
    • /
    • 2019
  • A seismic hazard map based on spatial analysis of various sources of geologic seismic information was developed and assessed for regional seismic vulnerability in South Korea. The indicators for assessment were selected in consideration of the geological characteristics affecting the seismic damage. Probabilistic seismic hazard and fault information were used to be associated with the seismic activity hazard and bedrock depth related with the seismic damage hazard was also included. Each indicator was constructed of spatial information using GIS and geostatistical techniques such as ordinary kriging, line density mapping and simple kriging with local varying means. Three spatial information constructed were integrated by assigning weights according to the research purpose, data resolution and accuracy. In the case of probabilistic seismic hazard and fault line density, since the data uncertainty was relatively high, only the trend was intended to be reflected firstly. Finally, the seismic activity hazard was calculated and then integrated with the bedrock depth distribution as seismic damage hazard indicator. As a result, a seismic hazard map was proposed based on the analysis of three spatial data and the southeast and northwest regions of South Korea were assessed as having high seismic hazard. The results of this study are expected to be used as basic data for constructing seismic risk management systems to minimize earthquake disasters.

Cross-Validation of SPT-N Values in Pohang Ground Using Geostatistics and Surface Wave Multi-Channel Analysis (지구통계기법과 표면파 다중채널분석을 이용한 포항 지반의 SPT-N value 교차검증)

  • Kim, Kyung-Oh;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.393-405
    • /
    • 2020
  • Various geotechnical information is required to evaluate the stability of the ground and a foundation once liquefaction occurs due to earthquakes, such as the soil strength and groundwater level. The results of the Standard Penetration Test (SPT) conducted in Korea are registered in the National Geotechnical Information Portal System. If geotechnical information for a non-drilled area is needed, geostatistics can be applied. This paper is about the feasibility of obtaining ground information by the Empirical Bayesian Kriging (EBK) method and the Inverse Distance Weighting Method (IDWM). Esri's ArcGIS Pro program was used to estimate these techniques. The soil strength parameter of the drilling area and the level of groundwater obtained from the standard penetration test were cross-validated with the results of the analysis technique. In addition, Multichannel Analysis of Surface Waves (MASW) was conducted to verify the techniques used in the analysis. The Buk-gu area of Pohang was divided into 1.0 km×1.0 km and 110 zones. The cross-validation for the SPT N value and groundwater level through EBK and IDWM showed that both techniques were suitable. MASW presented an approximate section area, making it difficult to clearly grasp the distribution pattern and groundwater level of the SPT N value.

Development and Application of a Methodology to Build Geotechnical Information System Based on Geo-Knowledge Using GIS Technology (GIS를 이용한 지반-지식 기반 지반 정보화 시스템 구축 기법의 개발 및 적용)

  • Sun Chang-Guk;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.55-68
    • /
    • 2006
  • For the reliable prediction of spatial geotechnical data, a procedure to build the Geotechnical Information System (GTIS) based on geo-knowledge within the frame of GIS technology was developed by introducing a couple of new concepts of the extended area containing the study area and the additional site visit for acquiring surface geological data. To build the GTIS for Gyeongju as the case study of regional model application, intensive site investigations and pre-existing geotechnical data collections were performed and additional site visit was also carried out for acquiring surface geo-layer data in accordance with the developed procedure. Within the GTIS based on geo-knowledge for Gyeongiu area, the spatially distributed geo-layers across the extended area were predicted using the geostatistical kriging method and those for the study area were extracted. Furthermore, the spatial distribution maps for the thickess of geo-layers and the depth to bedrock were constructed for the practical use in geotechnical field. It was evaluated that the GTIS based on geo-knowledge developed in this study is superior to the conventional geotechnical GIS in terms of both the standard deviation and the geological expert judgment.

Transient Ground Deformation induced by Sequential Earthquakes and Estimation of Underground Water Pipeline Performance in Canterbury, New Zealand (뉴질랜드 캔터배리 지역 연속지진에 의해 발생된 일시지반변형과 매설된 상수도관 성능평가)

  • Jeon, Sang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2818-2827
    • /
    • 2015
  • The spatial patterns and characteristics of these sequential earthquakes and ground motions induced by the earthquakes are examined by contours of peak ground velocity (PGV) and geometric mean peak ground velocity (GMPGV) using both ordinary kriging in geographical information system (GIS) and data, the records obtained from strong motion stations, acquired after recent sequential earthquakes in Canterbury, New Zealand (NZ). The performance of underground water pipeline system is examined by using data acquired after earthquakes. The spatial distribution of GMPGV is superimposed on water pipeline repairs throughout the water distribution system in areas affected principally by transient ground motion using GIS and then water pipeline repair rates, expressed as repairs/km, for different types of pipe are evaluated relative to the estimated GMPGV outside liquefaction areas. The earthquake performance of underground water pipeline systems is summarized in this study.

Design of Automotive Fuel Tank for Preventing Liquid Carry Over Using Taguchi Method and Approximate Optimization (다구치 방법과 근사최적설계를 이용한 자동차 연료탱크의 연료 넘침 방지 시스템 설계)

  • Park, Gyu-Byung;Lee, Yongbin;Cho, In-Geun;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1059-1067
    • /
    • 2013
  • Automotive fuel tank is generally divided into two parts: main frame and assembly parts. While the car is running, valves are used to prevent liquid carry over and to discharge evaporated gas from the fuel tank. However, current fuel tank designs focus on the gas ventilation or secured location. In this study, the location of the parts used to prevent liquid carry over within the fuel tank is evaluated during an optimal design process. To develop this design process, an approximate optimization is applied. Through the optimal design process, the optimal valve location in fuel tank is determined and the approximate optimization is validated by the Taguchi method. Finally, the optimized valve location is used to reduce the development cost and time and to contribute toward improved automobile quality owing to enhanced reliability.

Evaluation of the Feasibility of a Voice Alarm in a Highway Work Zone (음성 경고의 도로 공사구간 적용 가능성 평가)

  • Moon, Jae-Pil;Park, Hyun-jin;Oh, Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.83-94
    • /
    • 2016
  • Providing a voice alarm to drivers approaching a work zone could be an effective alternative to mitigate the potential safety problems of the work zone. This study conceived a voice alarm with a direction sound speaker and a field test was conducted that evaluated the feasibility of the voice alarm at a highway work zone. During the field study, we carried out on-site driver surveys to obtain drivers' perception and preference, collected approaching speeds, and measured sound level during the off-peak 2-hour for two days, respectively. The results showed that while the voice alarm has the potential to be an effective tool in improving safety, the alternative appeared to have the negative effect of noise. Further refinement to a voice alarm with a directional speaker is required to improve feasibility, and the results are expected to be utilized as basic data useful for the refinement.

A Geostatistical Study Using Qualitative Information for Tunnel Rock Binary Classificationll- II. Applcation (이분적 터널 암반 분류를 위한 정성적 자료의 지구통계학적 연구 II. 응용)

  • 유광호
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.19-26
    • /
    • 1994
  • In this paper, the application of the rock classification method based on indicator kriging and the cost of errors, which can incorporate qualitative data, was presented. In particular, the binary classification of rock masses was considered. To this end, a simplified RMR system was used. Since most of subjectivity in this analysis occur during the estimation of loss functions, a sensitivity analysis of loss functions was performed. Through this research, it was found out that an expected cost of errors could successfully be used as an indication for how well a sampling plan was designed. In certain conditions, qualitative data can be more economical than quantitative data in terms of expected costs of errors and sampling costs. Therefore, an additional sampling should be carefully determined depending upon the surrounding geologic conditions and its sampling cost. The application method shown in this paper can be useful for more systematic rock classifications.

  • PDF

Reliability-based Design Optimization using Multiplicative Decomposition Method (곱분해기법을 이용한 신뢰성 기반 최적설계)

  • Kim, Tae-Kyun;Lee, Tae-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.299-306
    • /
    • 2009
  • Design optimization is a method to find optimum point which minimizes the objective function while satisfying design constraints. The conventional optimization does not consider the uncertainty originated from modeling or manufacturing process, so optimum point often locates on the boundaries of constraints. Reliability based design optimization includes optimization technique and reliability analysis that calculates the reliability of the system. Reliability analysis can be classified into simulation method, fast probability integration method, and moment-based reliability method. In most generally used MPP based reliability analysis, which is one of fast probability integration method, if many MPP points exist, cost and numerical error can increase in the process of transforming constraints into standard normal distribution space. In this paper, multiplicative decomposition method is used as a reliability analysis for RBDO, and sensitivity analysis is performed to apply gradient based optimization algorithm. To illustrate whole process of RBDO mathematical and engineering examples are illustrated.

A Parallel Approach for Accurate and High Performance Gridding of 3D Point Data (3D 점 데이터 그리딩을 위한 고성능 병렬처리 기법)

  • Lee, Changseop;Rizki, Permata Nur Miftahur;Lee, Heezin;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.8
    • /
    • pp.251-260
    • /
    • 2014
  • 3D point data is utilized in various industry domains for its high accuracy to the surface information of an object. It is substantially utilized in geography for terrain scanning and analysis. Generally, 3D point data need to be changed by Gridding which produces a regularly spaced array of z values from irregularly spaced xyz data. But it requires long processing time and high resource cost to interpolate grid coordination. Kriging interpolation in Gridding has attracted because Kriging interpolation has more accuracy than other methods. However it haven't been used frequently since a processing is complex and slow. In this paper, we presented a parallel Gridding algorithm which contains Kriging and an application of grid data structure to fit MapReduce paradigm to this algorithm. Experiment was conducted for 1.6 and 4.3 billions of points from Airborne LiDAR files using our proposed MapReduce structure and the results show that the total execution time is decreased more than three times to the convention sequential program on three heterogenous clusters.