• Title/Summary/Keyword: 크랙 에너지 해방율

Search Result 4, Processing Time 0.018 seconds

An Analysis on Fracture Behavior of Aluminum Foil and Paper by Linear Elastic Fracture Mechanics (선형파괴역학에 의한 Aluminum Foil과 종이의 파괴거동 해석)

  • An, Deuk-Man;Ok, Young-Gu
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.159-164
    • /
    • 2000
  • The fracture behaviors of aluminum foils and sheet papers were analyzed on the basis of linear elastic fracture mechanics(LEFM). The fracture loads of the similarly shaped specimens were calculated by dimensional analysis. The actual fracture loads were measured using the simple tension equipment. The predicted fracture loads were compared with the experimental results.

  • PDF

Study on Fracture at Material under Dynamic Load (동적 하중을 받는 재료에서의 파단에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.16-22
    • /
    • 2008
  • This study was analyzed dynamically by finite element method about the results of experiments which materials were applied by dynamic load. And they were compared with each other as the simulation data applied onto dynamic impact velocities of 6.4, 16.7 and 18.47m/s. The crack energy release rate, von-Mises stress and the displacement according to the load applied by block were calculated numerically by computer. As the numerical simulation data of specimen analyzed in this study approached the experimental data, the inspection of this specimen model suggested in this paper could be reasonable for the numerical simulation.

  • PDF

Impact Behavior at Composite Material of Aluminium Double Cantilever Beam with Two Kinds of Materials (이종재료의 알루미늄 이중 외팔보 복합재의 충격 거동)

  • Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.421-426
    • /
    • 2007
  • This study was analyzed dynamically by finite element method about the results of experiments which the double cantilever beam specimens with two kinds of materials were applied by impact load. And they were compared with each other as the simulation data applied onto impact velocities of 6.4 and 18.47 m/s. The crack energy release rate, force and displacement of block were calculated numerically by computer. As the numerical simulation data of specimen analyzed in this study approached the experimental data, the inspection of this specimen model suggested in this paper could be reasonable for the numerical simulation.

  • PDF

Estimation of Tearing Energy for Fatigue Life Prediction of Rubber Material (고무의 피로 수명 예측을 위한 찢김에너지 수식화)

  • Kim, Ho;Kim, Heon-young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.172-177
    • /
    • 2004
  • Fatigue life prediction is based on fracture mechanics and database which is established from experimental method. Rubber material also uses the same way for fatigue life prediction. But the absence of standardization of rubber material, various way of composition by each rubber company and uncertainty of fracture criterion makes the design of fatigue life by experimental method almost impossible. Tearing energy which has its origin in energy release rate is evaluated as fracture criterion of rubber material and the applicability of fatigue life prediction method are considered. The system of measuring tearing energy using the principal of virtual crack extension method and fatigue life prediction by the minimum number of experiments are proposed.

  • PDF