• Title/Summary/Keyword: 크랙모드

Search Result 24, Processing Time 0.025 seconds

공구파손의 파괴역학적 해석에 관한 기초적 연구

  • 이태세
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.33-37
    • /
    • 1992
  • 구조물과 기계부품에 부하를 주는 하중은 여러가지 종류가 있고, 이에 따르는 파괴의 형식도 여러가지가 있다. 그중에서도 연강압연용 로울러, 베어링 레일등은 집중 압축하중을 받는데 이들 부재의 파괴사고가 빈번히 일어나고 잇다. 압축에 의한 파괴 중 frectting, 피팅등과 같은 마모 현상은 두 재료의 표면이 서로 미끌어질때 일어나며, 이것이 공구나 기계부품의 성능과 수명을 저하시키는 주원인이 되며, 이러한 궁구나 기계 부품을 수리 또는 교환을 하기위한 인적, 경제적 손실은 막대하다. 본 연구에서는 금형등 공구의 마모편이 발생되는 마지막 과정인 크렉의 성장을 고찰하기 위하여 Sub-surface크랙 모델을 설정하여 2차원 유한요소 법으로 경계층 근방에 크랙이 존재하는 반무한 평면에 집중하중이 작용할때의 응력확대계수를 해설하였는데, 일반화된 해석법으로 혼합모드에서의 응력확대계수를 결정하였다.

Development of a Lateral Mode Piezoelectric Oscillator Sensor to Detect Damages in a Structure (구조물 손상 탐지를 위한 경 방향 모드 압전 오실레이터 센서 개발)

  • Roh, Yong-Rae;Kim, Dong-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.125-132
    • /
    • 2006
  • This paper presents the feasibility of a lateral mode piezoelectric oscillator to detect damages in civil infrastructures. The lateral mode oscillator sensor is composed of an electronic feedback oscillator circuit and a piezoelectric lateral mode vibrator to be attached to a structure of interest. Damage to the structure causes a change in the impedance spectrum of the structure, which results in a corresponding change of a resonant frequency of the structure. The oscillator sensors can instantly detect the frequency change in a very simple manner. Feasibility of the piezoelectric oscillator sensor was verified in this work with a sample aluminum plate where artificial cracks of different lengths and number were imposed in sequence. Validity of the measurement was confirmed through comparison of the experimental data with the results of finite element analyses of a plate with cracks.

Development of a Thickness Mode Piezoelectric Oscillator Sensor to Detect Damages in a Structure (구조물 손상 탐지를 위한 두께 방향 모드 압전 오실레이터 센서 개발)

  • Kim, Dong-Young;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.95-101
    • /
    • 2007
  • This paper presents the feasibilityof a thickness mode piezoelectric oscillator to detect damages in structures. The thickness mode oscillator sensor is composed of an electronic feedback oscillator circuit and a piezoelectric thickness mode vibrator to be attached to a structure of interest. Damage to the structure causes a change in the impedance spectrum of the structure, which results in a corresponding change of a resonant frequency of the structure. The oscillator sensor can instantly detect the frequency change in a very simple manner. Feasibility of the piezoelectric oscillator sensor was verified with a sample aluminum plate where artificial cracks of different lengths and number were imposed in sequence. Validity of the measurement was confirmed through comparison of the experimental data with the results of finite element analyses of a plate with cracks.

Crack Detection of Rotating Blade using Hidden Markov Model (회전 블레이드의 크랙 발생 예측을 위한 은닉 마르코프모델을 이용한 해석)

  • Lee, Seung-Kyu;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.99-105
    • /
    • 2009
  • Crack detection method of a rotating blade was suggested in this paper. A rotating blade was modeled with a cantilever beam connected to a hub undergoing rotating motion. The existence and the location of crack were able to be recognized from the vertical response of end tip of a rotating cantilever beam by employing Discrete Hidden Markov Model (DHMM) and Empirical Mode Decomposition (EMD). DHMM is a famous stochastic method in the field of speech recognition. However, in recent researches, it has been proved that DHMM can also be used in machine health monitoring. EMD is the method suggested by Huang et al. that decompose a random signal into several mono component signals. EMD was used in this paper as the process of extraction of feature vectors which is the important process to developing DHMM. It was found that developed DHMMs for crack detection of a rotating blade have shown good crack detection ability.

  • PDF

A Study on the Coating Cracking on a Substrate in Bending II : Experiment (굽힘모드하에서의 코팅크랙킹의 분석II: 실험)

  • Sung-Ryong Kim;John A. Nairn
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.48-57
    • /
    • 2000
  • Fracture analysis of coating cracking on a substrate system described in a companion paper was applied and verified by four-point bending tests. The multiple cracking of coating was predicted using a fracture mechanics approach. The strain energy release rate (G) due to the formation of a new crack in a coating was obtained. A crack density vs. strain data of metallic and polymeric substrate was used to get the in-situ fracture toughness of coating with respect to various baking time and temperature. The $G_c$ was decreased as the baking temperature and time was increased. This paper gave insight about usefulness of four-point bending test for fracture toughness evaluation of coating and it gave a new method for in-situ coating toughness.

  • PDF

Study on the Characteristics of Propagating Fatiguc Crack under Mixed-Mode Loading Condition (혼합모드하중상태에서 전파하는 피로크랙특성에 관한 연구)

  • 송삼홍;최진호;임진학
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.644-649
    • /
    • 1993
  • Practical structures are subject not only to tension but also to shear and torsional loading. In this study, the mode 1 and 2 stress intensity factors of specimens were calculated by using elastic finite element mothod. The stress fields at the crack tip subjected to mixed-mode loading were also studied by usingf eleatic finite element method and were compared with theoretical results. The three-point-bending, four-point-bending, and mixed-mode-loading experiment were carried out. And, crack propagation rate da/dN and crack growth direction were examined. Also, the elastic finite element method was applied to calculate the stress intensity factors of branch crack tip and we relate the stress intenity factor range of branch crack tip(the result of FEM) to crack propagation rate(the experimental result). The .DELTA. -da/dN relation corelated with that of mode 1.

  • PDF

A Study for Lifetime Predition of Expansion Joint Using HILS (HILS 기법을 적용한 신축관 이음 수명예측에 관한 연구)

  • Oh, Jung-Soo;Cho, Sueng-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.138-142
    • /
    • 2018
  • This study used HILS to test an expansion joint, which is vulnerable to the water hammer effect. The operation data for the HIL simulator was the length rate of the expansion joint by the water hammer, which was used for life prediction based on the vibration durability. For the vibration durability test, the internal pressure of the expansion joint was assumed to be a factor of the durability life, and the lifetime prediction model equation was obtained by curve fitting the lifetime data at each pressure. During the test, the major failure modes of crack and water leakage occurred on the surface of the bellows part. The lifetime prediction model typically follows an inverse power law model. The pressure is a stress factor, and the model is effective in only a specific environment. Therefore, another stress factor such as temperature will be added and considered for a mixed lifetime prediction model in the future.

Lifetime Estimation of a Bluetooth Module using Accelerated Life Testing (가속수명시험을 이용한 블루투스 모듈의 수명 예측)

  • Son, Young-Kap;Chang, Seog-Weon;Kim, Jae-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • This paper shows quantitative reliability evaluations of a Bluetooth module through extending previous qualitative methods limited to structure reliability tests and solder joint reliability tests for Bluetooth modules. Accelerated Life Testing (ALT) of the modules using temperature difference in temperature cycling as an accelerated stress was conducted for quantitative reliability evaluation under field environment conditions. Lifetime distribution parameters were estimated using the failure times obtained through the ALT, and then Coffin-Manson model was implemented. Results of the ALT showed that the failure mode of the modules was open and the failure mechanisms are both crack and delamination. The ALT reproduced the failure mode and mechanisms of failed Bluetooth modules collected from the field. Further, a quantitative reliability evaluation method with respect to various temperature differences in temperature cycling was proposed in this paper. $B_{10}$ lifetime of the module for the temperature difference $70^{\circ}C$ using the proposed method would be estimated as about 4 years.

  • PDF

A Study on Mode II Interlaminar Fracture Toughness of Hybrid Composites (하이브리드 복합재료의 모드II 층간파괴인성치에 관한 연구)

  • 김형진;박명일;곽대원;김재동;고성위
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.42-47
    • /
    • 2002
  • This paper describes the effect of loading rate, specimen geometries and material properties for Mode II interlaminar fracture toughness of hybrid composite by using end notched flexure(ENF) specimen. In the range of loading rate 0.5~2mm/min, there is found to be no significant effect of loading rate with the value of critical energy release rate( $G_{IIc}$). there is no dependence of the interlaminar fracture energy upon the specimen width over the specimen widths examined. The value of $G_{IIc}$ for variation of initial crack length are nearly similiar values when material properties are CF/CF and GF/GF, however, the value of $G_{IIc}$ are highest with the increasing intial crack length at CF/GF. The values of $G_{IIc}$ for variation material properties are higher with the increasing moulding pressure when moulding pressures are 307, 431, 585㎪. The SEM photographs show good fiber distribution and interfacial bonding of hybrid composites when the moulding is the CF/GF.e CF/GF.

Reliability Design of the Hinge Kit System in Common Refrigerator Under Repetitive Load (상용 냉장고에서 반복 하중을 받는 힌지 키트 시스템(HKS)의 신뢰성 설계 연구)

  • Woo, Seong-woo;Lee, Jongkil
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.312-324
    • /
    • 2008
  • To improve the newly designed HKS(hinge kit system) in common refrigerators, it was investigated the new robust methodologies. There were the study of failure modes, mechanisms in the marketplace, and the design parameters of HKS with various improvements using accelerated life testing. Based on the claimed marketplace product returns and 1st ALT reproduction, the fracturing and cracking occur in the housing of the HKS. The missing design parameters of the failed HKS in the design phase of the refrigerator was the housing hinge kit structure. The corrective action plans are the modifications of the housing hinge kit structure from the open supporting to all supporting structure. Based on 2nd ALTs, the fracturing and cracking occur in the torsion shaft. The missing design parameter was the roundness of torsion shaft. After a sequence of ALT testing, the levels of the missing design parameters were setup. The yearly failure rate and B1 life of the redesigned HKS, based on the results of ALT, were over 0.01 percent and 10 years, respectively. The parameter design through the inspection of the failed product, load analysis, and three rounds of ALT, was very effective in the new robust design methodologies of the mechanical system and this method can be applied to other design system.