전이학습은 영상 분류를 진행한 모델을 사용하여 다른 종류의 영상 분류에 적용하여 문제를 푸는 것을 의미하며, 모델 설계부터 진행한 학습 모델보다 빠른 속도와 높은 정확도를 달성할 수 있다. 또한, 적은 데이터셋에 대하여 학습을 진행하여 좋은 결과를 도출할 수 있는 장점이 존재한다. 본 논문에서는 전이학습으로 사용되는 모델 중 Xception 모델을 사용하며, 욕창 이미지의 모델 입력 크기를 256, 512, 1024의 크기로 설정하여 학습을 진행 후 욕창 이미지 크기별 성능을 비교분석을 진행하고자 한다.
본 논문에서는 원전SG세관 결함 크기 추정을 위한 새로운 구조의 추정시스템에 대한 연구를 수행한다. 기존의 연구에서는 결함 크기를 추정하기 위하여 각각의 결함 형태별로 결함크기추정시스템을 설계하였다. 이와 같은 경우, 추정시스템의 구조가 복잡해지고 결함 크기 추정 이전에 수행하는 결함형태분류기의 정확성이 떨어질 경우 결함 크기 추정 성능도 결과적으로 악화될 수밖에 없다. 이에 본 논문에서는 결함 형태 분류 과정을 필요로 하지 않는 결함크기추정시스템의 성능을 분석하고 이를 향상시키기 위한 방안을 연구하였다. 기존의 추정시스템은 각각의 결함 형태별로 특화된 추정기를 사용하기 때문에 추정 성능이 훨씬 뛰어날 것으로 예상되었지만, 실험 결과 두 추정시스템의 성능 차이는 그리 크지 않다는 것을 알 수 있었다. 따라서 결함형태분류기의 정확성이 완벽하지 않을 경우, 본 논문에서 제안한 구조의 추정기가 효과적으로 사용될 수 있을 것으로 기대된다.
본 논문에서는 영상 내에서의 객체를 기준점을 사용하여 크기에 따라 분류할 수 있는 시스템을 제안한다. 본 논문에선 객체를 샘플로 하여 연구를 진행하였다. 제안된 시스템은 휴대폰 카메라를 이용하여 획득한 영상에서 객체를 크기 별로 인식해서 그 종류를 파악하고 분류한다. 기존의 객체 인식 시스템들은 객체의 크기만을 이용해서 해당 객체를 분류하였다. 그러한 시스템들은 일정한 거리를 두어 획득한 영상이 아니면 거리에 따라 객체의 크기가 달라져 오류가 발생하는 단점이 있다. 이에 본 논문에서 제안하는 객체 인식 시스템은 이러한 기존의 객체 인식 시스템의 한계를 극복하고자 영상의 왼쪽 상단에 기준점을 두어 그 기준점과 객체의 크기를 비교하여 거리에 상관없이 객체를 분류할 수 있다.
뉴캣슬병 바이러스가 발견된지 50여년이 지난 오늘에도 그 발생은 전 세계적으로 광범위하다. NDV가 분리됨으로 백신개발이 이루어져 1930년대말부터 완전하지는 못했으나 그런대로 방역을 맡았으며 그후 개량발전된 백신으로 각국에서 예방접종하고 있으나 여전히 발생하고 있다. NDV는 Paramyxovirus로서 RNA를 가지고 있으며 크기는 $100\~600{\mu}m$ 범위의 크기와 lipoprotein envelope로 쌓여 있다. 분리동정에 이용되는 혈구응집소, neuraminidase의 작용, 용혈성 등 모두 envelope와 관련이 있으며 이와 관련된 연구가 많이 진행되고 있다. NDV가 세포에 침투하는 과정에서 특이한 receptor에 부착하여 envelope의 용해 및 nucleocapsid의 세포속에 침투 등이 밝혀지고 있으며 NDV의 Virion은 RNA의존 RNA 복합체를 가지고 있고 보족 RNA는 바이러스 단백질 및 RNA를 산생하기 위해서 숙주에 의하여 전환을 한다. 1 일령추의 뇌내접종, 정맥내 접종 및 계태 아치사시간 등의 방법으로 Velogenic, Mesogenic Lentogenic type으로 분류하고 감염력에 따라 Virulent 또는 avirulent로 구분된다. 국내에서 분리된 NDV는 현재 Velogenic형으로 분류되고 있으나 앞으로 지역별, 계절별, 감염된 숙주별로 광범위하게 분리하여 국내에서 유행하고 있는 NDV의 성상조사와 특성을 파악 할 필요성이 요청된다.
광섬유는 코어(Core), 클레드(Clad), 그리고 1,2차 코팅(Coating)으로 구성되어 있다. 본 연구에서는 광섬유의 코팅에 생기는 결함의 유무 및 종류와 크기를 분류하는 Vision System을 구현하였다. 전처리 과정으로, CCD Camera를 이용하여 얻은 화상에 대하여 Sobel 연산자로 경계선을 추출하고, 문턱값(Threshold Value)을 적용하여 이진 화상을 만든다. 외경 정보 추출을 위하여, 투영 정보, 수리 형태학(Mathematical Morphology)적 연산을 수행하고, 결함의 종류와 크기를 효율적으로 분류하도록 Tree Classifier를 설계하였다. 실험 결과로서 각 결함 별 오차율, 전체 오차율(Total Error Rate)등을 제시하였다.
연구방법: 지반을 구성하고 있는 각각의 재료들의 공학적 구분을 위하여 토사, 자갈, 호박돌 등의 용어가 사용되고 있으나, 기관별로 제시된 기준의 차이와 관용적 사용으로 인하여 지반에 대한 정확한 표현상의 어려움이 발생하고 있으므로 각 기관별로 상이한 용어 및 크기에 대한 분석을 수행하였다. 연구목적: 시추 기술자의 경험적 판단에 의한 지층 판별이 관행적으로 이루어지는 문제점이 있다. 이러한 것들이 지반분야의 혼란을 야기할 수 있다. 따라서, 통일된 기준을 제시하고자 하였다. 연구결과: 본 논문에서는 이러한 문제점을 해결하기 위하여 각 기관별로 상이한 용어 및 크기에 대한 정리를 통하여 합리적인 기준을 제시하였다. 결론: 시추에 의한 지반조사에서 모래, 자갈, 호박돌 등 채취된 시료의 중량비, 출현빈도 및 시료길이 등을 활용하여 비교적 객관적으로 토층을 분류할 수 있는 합리적인 모델을 제시하였다.
네트워크 관리자 입장에서 효율적인 네트워크 관리를 위해 응용 프로그램 별 트래픽 분류의 중요성이 커지고 있다. 응용 프로그램 별 트래픽 분류를 위해 signature 기반, machine learning 방법들이 제안되고 있지만 p2p 방식의 Skype 응용프로그램에 대한 적용결과는 그 신뢰성이 떨어지고 있는 것은 사실이다. 본 논문에서는 Skype의 트래픽을 분류하기 위해 각 Client 마다 Skype application install 시 동적으로 변화하는 Port 를 알아내는 방법, UDP 패킷의 특정위치의 특정 signature, TCP signal flow의 특정위치 패킷에 대한 payload 크기 등을 이용한 Skype traffic 분류 방법을 제안한다. 제안된 방법론은 학내 네트워크에 적용하여 그 타당성을 TMA를 통해 검증하였다.
불균형 데이터는 범주에 따른 데이터의 분포가 불균형한 데이터를 의미한다. 이런 데이터를 활용해 기존 분류 알고리즘으로 분류기를 학습하면 성능이 저하되는 문제가 발생한다. 오버 샘플링은 이를 해결하기 위한 기법 중 하나로 수가 적은 범주[이하 소수 범주]에 속한 데이터 수를 임의로 증가시킨다. 기존 연구들에서는 수가 많은 범주[이하 다수 범주]에 속한 데이터 수와 동일한 크기만큼 증가시키는 경우가 많다. 이는 증가시키는 샘플의 수를 결정할 때 범주 간 데이터 수 비율만 고려한 것이다. 그런데 데이터가 동일한 수준의 불균형 정도를 갖더라도 범주별 데이터 분포에 따라서 분류 복잡도가 다르며, 경우에 따라 데이터 분포에서 존재하는 불균형 정도를 완전히 해소하지 않아도 된다. 이에 본 논문은 분류 복잡도를 활용해 데이터 셋 별 적정 오버 샘플링 비율을 산출하는 알고리즘을 제안한다.
인터넷의 발달로 데스크탑 컴퓨터만이 아니라 냉장고, 달리는 차안, PDA, 핸드폰 등 생활 영역 곳곳에서 인터넷을 할 수 있다. 이런 다양한 기기에서 누릴 수 있는 서비스의 질은 분명 다르다. 여러 종류의 다양한 서비스를 보장하기 위해서 서비스 제공자는 같은 상품이라도 화질별로 이미지를 가지고 있어야 한다. 전자상거래용 이미지는 같은 상품에 대한 이미지라도 상황에 따라 보이는 크기가 다르다. 카달로그 목록에 있는 이미지는 작은 것을 사용하고 상품을 제시할 때는 확대된 그림을 사용해야 한다. 현재의 서버시스템은 이미지를 크기에 따라 개별적으로 저장한다 따라서 상품을 교체할 때마다 여러 개의 이미지를 동시에 바꿔야 하기 때문에 이러만 시스템은 비효율적이다. 본 논문에서는 이런 비효율성을 줄이기 위해 수준에 맞게 이미지를 자동으로 처리하여 같은 이미지를 여러 버전으로 보여주는 웹 이미지 서버를 제안한다. 제안된 웹 서버는 사용자를 분류하고 그 분류에 따라 대용량, 고화질 이미지에서 저용량, 저화질로 이미지를 자동으로 처리하여 효과적이고 더 빠른 서비스를 제공할 수 있다. 따라서 하나의 웹 이미지로도 다양한 수준의 이미지를 가질 수 있기 때문에 서비스 종류 별로 웹 페이지를 만들지 않아도 되고, 저장공간도 효율적으로 사용할 수 있다.
본 논문에서는 MB-LBP(Multi-scale Block Local Binary Patterns)와 공간피라미드를 이용하여 생성된 특징을 랜덤 포레스트(Random Forest) 분류기에 적용하여 영상내의 표지판 속도를 인식하는 알고리즘을 제안한다. 입력 영상에서 표지판 영역은 다양한 위치와 크기를 가지며 주위 배경이 후보 영역에 포함되므로 먼저 입력 영상에 원형 Hough Transform을 적용하여 원형의 표지판 후보 영역만을 검출한다. 그 후 영상의 화질을 향상시키기 위해 히스토그램 평활화와 모폴로지 연산을 적용하여 표지판의 숫자 영역과 배경 영역의 대비를 높이도록 한다. 표지판의 크기 변화에 강건한 시스템의 구현을 위해 후보 영역에서 LBP(Local Binary Patterns)보다 우수한 성능을 보이는 MB-LBP를 적용하고, 다양한 크기의 속도 표지판을 인식하기 위해 공간 피라미드를 사용하여 지역적 특징과 전역적 특징 모두를 추출하였다. 추출된 특징은 랜덤 포레스트(Random Forest)를 이용하여 각 9개의 속도 표지판으로 분류, 각 속도별 클래스에 대한 인식 성능을 측정하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.