• Title/Summary/Keyword: 쿼세틴 유도체

Search Result 2, Processing Time 0.019 seconds

Antioxidant activity of ethanol extract and methanol fractions via column chromatography from Psidium guajava Leaf (구아바 잎 추출물 및 컬럼크로마토그래피를 이용한 메탄올 분획물의 항산화 활성)

  • Byeoung-Kyu Choi
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.266-271
    • /
    • 2023
  • The antioxidant capacity of the Psidium guajava leaf extracted with EtOH and their MeOH fractions using column chromatography were evaluated by 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging assays, total phenolic and flavonoid content, and Superoxide dismutase (SOD) assay. To determine its utility as a functional material, the crude extract was fractionated by flash column chromatography on ODS using a stepwise elution with combinations of MeOH/H2O and then all the fractions were also investigated. In the results of antioxidant activities, the 40% and 60% MeOH fractions show the meaningful values, and then the two fractions were selected to examine the isolation and identification of the major constituents via HPLC and nuclear magnetic resonance. Further purification led to isolation of two quercetin derivatives; quercitrin (1) and isoquercetin (2). Through SOD assay, some methanol fractions via column chromatography and isolated compounds showed improved antioxidant activities compared to the extract.

Liposome Formation and Active Ingredient Capsulation on the Supercritical Condition (초임계 상태에서 리포좀의 생성 및 약물봉입)

  • Mun, Yong-Jun;Cha, Joo-Hwan;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1687-1698
    • /
    • 2021
  • This study is to produce multiple layers of liposomes in a supercritical state and encapsulates active ingredients in order to stably encapsulate thermodynamically unstable active ingredients. In order to form a liposome in a supercritical state, a mixed surfactant development including vegetable-derived hydrogenated phosphatidyl choline and their delivative, hydrogenated sucrose distearate was synthesized as high purity. It describes a manufacturing method of injecting liquid carbon dioxide into a reactor to create a supercritical state and stirring to produce a giant liposome, and adding and loading genistein and quercetin. The HLB of the mixed lipid complex (SC-Lipid Complex) was 12.50, and multiple layers of liposome vesicles were formed even at very low concentrations. This surfactant had a specific odor with a pale yellow flake, the specific gravity was 0.972, and the acid value was 0.12, indicating that it was synthesized with high purity. As a result of the emulsifying capacity experiment using 20 wt% capric/capric triglyceride and triethylhexanoin using SC-Lipid Complex, it was found to have 96.2% emulsifying power. SC LIPOSOME GENISTEIN was confirmed that a multi-layer liposome vesicle was formed through a transmission electron microscope (Cryo-TEM) for the supercritical liposome encapsulated with genistein. The primary liposome particle size in which genistein was encapsulated was 253.9 nm, and the secondary capsule size was 18.2 ㎛. Using genistein as the standard substance, the encapsulation efficiency of supercritical liposomes was 99.5%, and general liposomes were found to have an efficiency of 93.6%. In addition, the antioxidant activity experiment in which quercetin was sealed was confirmed by the DPPH method, and it was found that the supercritical liposome significantly maintained excellent antioxidant activity. In this study, thermodynamically unstable raw materials were sealed into liposomes without organic solvents in a supercritical state. Based on these results, it is expected that it can be applied to various forms such as highly functional skincare cosmetics, makeup cosmetics, and scalp protection cosmetics.