• Title/Summary/Keyword: 쾌속 시작 및 제작

Search Result 9, Processing Time 0.023 seconds

The Manufacturing Technique of Metal Rapid Products by the Milling Process (절삭가공에 의한 금속 쾌속 시작품 제작기술)

  • 신보성;최두선;이응숙;이동주;이종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.759-762
    • /
    • 2000
  • In order to reduce lead-time and cost, recently the technology of Rapid Prototyping and Manufacturing (PR/M) has been used widely. So various RP/M methods have been developed and these systems commercialized several years ago. But we have carried out rapid product, such as sphere, by the milling process instead of RP system. in the case of sphere with three-dimensional shape. the machining method using conventional milling machine has resulted in some troubles because of its deformation and lack of stiffness which is due to usual work piece set up method. In this paper, the feasibility of milling process which is divided into two steps such as the-upper-and-1ower-face milling process using supporting material were investigated and suggested.

  • PDF

The Manufacturing Technique of Rapid Products using Filling Process (충진공정을 이용한 쾌속시작품 제작 기술)

  • 신보성;최두선;이응숙;이종현;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.767-770
    • /
    • 2000
  • In order to reduce lean-time and cost, recently the technology of Rapid Prototyping and Manufacturing(PR/M) has been used widely. So various RP/M methods have been developed and these systems commercialized several years ago. The machining process is one of these methods. It also offers advantages such as precision and versatility. But there are some considerations during machining. The most important problem among them is the fixturing. So we have to overcome the limitation because the fixturing time is depend on the complexity of geometry to be machined. In this paper, we have developed the fixturing technique using filling process that can be widely useful for rapid products within a short time. So we have carried out some kinds of rapid products such as plastic knob and metal fan using our fixturing process. In fixturing step, the filling material might chosen a resin or a alloy according to wether the work material is plastic or metal respectively. Also we developed the set-up equipment attachable on the table of the milling machine that provided practicable quality during a series of machining operations, named by two step milling process.

  • PDF

Rapid Manufacturing of Trial Molds and Prototypes by High Speed Machining (고속가공을 이용한 시작금형 및 시작품의 쾌속제작)

  • Sin, Bo-Seong;Yang, Dong-Yeol;Choe, Du-Seon;Je, Tae-Jin;Lee, Eung-Suk;Hwang, Gyeong-Hyeon;Lee, Jong-Hyeon;J. H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.124-129
    • /
    • 2001
  • Recently, life cycle and lead-time of products have been shortened with the demand of customers. Therefore, it is important to reduce time and cost at the step of manufacturing trial molds. High speed machining can be applied for this kind of purpose with a lot of practical advantages. In our research, several fundamental experiments are carried out to obtain machining parameters such as cutting force, machining time and surface characteristics for tool paths that are appropriate to high-speed machining. Moreover, a trial mold for an automatic transmission knob is fabricated with aluminum-7075 material. Using automatic set-up equipments, an ABS rapid prototype of a trial product of an AT knob is also manufactured with a filling process.

  • PDF

Die Manufacturing and Repair Using Laser-Aided Direct Metal Manufacturing (레이저 직접금속조형(DMM)기술에 의한 금형제작 및 보수)

  • 지해성;서정훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.104-107
    • /
    • 2002
  • Direct Metal Manufacturing (DMM) is a new additive process that aims to take die making and metalworking in an entirely new direction. It is the blending of five common technologies : lasers, computer-aided design (CAD), computer-aided manufacturing (CAM), sensors and powder metallurgy. The resulting process creates parts by focusing an industrial laser beam onto a tool-steel work piece or platform to create a molten pool of metal. A small stream of powdered tool-steel metal is then injected into the melt pool to increase the size of the molten pool. By moving the laser beam back and forth, under CNC control, and tracing out a pattern determined by a computerized CAD design, the solid metal part is built line-by-line, one layer at a time. DMM produces improved material properties in less time and at a lower cast than is possible with traditional fabrication.

  • PDF

SFFS 장비 개발을 위한 레이저 주사 시스템에 관한 연구

  • 최경현;최재원;김대현;도양회;이석희;김성종;김동수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.308-308
    • /
    • 2004
  • 쾌속조형기술은 설계형상의 확인, 시작품의 제작, 금속 및 세라믹 부품에의 응용, 동시공학, 의료, 마이크로 머신 둥 제조업 전반에 걸쳐서 많은 응용이 이루어지고 있다 여러 가지의 기술들이 개발되고 이를 응용한 장비들이 생산되어 보급됨으로써 이러한 적용분야들은 점차 확대되고 있다. 본 연구에서는 분말을 소결, 적층하여 원하는 형상을 만들어내는 SLS(Selective Laser Sintering) 장비를 개발하는데 있어서 레이저 경로의 제어를 통한 분말을 소결시키는 부분인 레이저 주사 시스템(laser scanning system)을 개발하고자 한다.(중략)

  • PDF

Development of Automatic Filling Process for Rapid Manufacturing by High-speed Machining Process (고속가공에 의한 쾌속제작용 자동충진 공정개발)

  • 신보성;양동열;최두선;이응숙;제태진;김기돈;이종현;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.28-31
    • /
    • 2001
  • Recently, in order to satisfy the consumer's demand the life cycle and the lead-time of a product is to be shortened. It is thus important to reduce the time and cost in manufacturing trial products. Several techniques have been developed and successfully commercialized in the market RPM(Rapid Prototyping and Manufacturing). However, most commercial systems currently use resins or waxes as the raw materials. So, the limited mechanical strength for functional testing is regarded as an obstacle towards broader application of rapid prototyping techniques. To overcome this problems, high-speed machining technology is being investigated worldwide for rapid manufacturing and even for direct rapid tooling application. In this paper, some fundamental experiments and analyses are carried out to obtain the filling time, materials, method, and process parameters for HisRP process. HisRP is a combination process using high-speed machining technology with automatic filling. In filling process, Bi58-Sn alloy is chosen because of the properties of los-melting point, low coefficient of thermal expansion and enviromental friendship. Also the use of filling wire is of advantage in term of simple and flexible mechanism. Then the rapid manufacturing product, for example a skull, is machined for aluminum material by HisRP process with an automatic set-up device of 4-faces machining.

  • PDF

Development of Automatic Filling Process using Low-Melting Point Metal for Rapid Manufacturing with Machining Process (절삭가공과 저융점금속에 의한 쾌속제작용 자동충진공정 개발)

  • Shin, Bo-Seong;Yang, Dong-Yeol;Choi, Du-Seon;Kim, Ki-Don;Lee, Eung-Suk;Je, Tae-Jin;Hwang, Kyeong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.88-94
    • /
    • 2002
  • Recently, the life cycle and the lead-time of a product are to be shortened in order to satisfy consumer's demand. It is thus important to reduce the time and cost in manufacturing trial products. Several technique have been developed and successfully commercialized in the market of RPM(Rapid Prototyping and Manufacturing). However, most commercial systems currently use resins or waxes as the raw materials. So, the limited mechanical strength for functional testing is regarded as an obstacle towards broader application of rapid prototyping techniques. To overcome these problems, high-speed machining technology is being investigated worldwide for rapid manufacturing and even for direct rapid tooling application. In this paper, some fundamental experiments and analyses are carried out to obtain the filling time, materials, method, and process parameters for HisRP(High-Speed RP) process. HisRP is a new RP process that is combined high-speed machining with automatic filling. In filling process, Bi58-Sn alloy is chosen as filling material because of the properties of low-melting point, low coefficient of thermal expansion and no harm to environment. Also the use of filling wire it if advantage since it needs simple and flexible mechanism. Then the rapid product, for example a skull, is manufactured for aluminum material by HisRP process with an automatic set-up device thor 4-faces machining.

Design and Development of the Simulated Die casting Process by using Rapid Prototyping (쾌속조형을 이용한 다이 캐스팅 제품의 시작 공정 설계 및 제작)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho;Park, Tae-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.167-173
    • /
    • 2001
  • The simulated die-casting process in which the traditional plaster casting process is combined with Rapid Prototyping technology is being used to produce AI, Mg, and Zn die-casting prototypes. Unlike in the die-casting process, molten metal in the conventional plaster casting process is fed via a gravity pour into a mold and the mold does not cool as quickly as a die-casting mold. The plaster castings have much larger and grosser grain structure as compared with the normal die-castings and the thin walls of the plaster mold cavity may not be completely filled. Because of lower mechanical properties induced by the large grain structure and incomplete filling, the conventional plaster casting process is not suitable for the trial die-casting process to obtain quality prototypes. In this work, an enhanced trial die-casting process has been developed in which molten metal in the plaster mold cavity is vibrated and pressurized simultaneously. Patterns for the casting are made by Rapid Prototyping technologies and then plaster molds, which have a runner system, are made using these patterns. Pressurized vibration to imparted molten metal has made grain structure of castings much finer and improved fluidity of the molten enough to obtain complete filling at thin walls which may not be filled in the conventional plaster casting process..

  • PDF

A Study on Manufacturing Resin-based Blow Mold using SLS Parts and Forming Prototype-car Parts (SLS 조형품을 이용한 수지형 블로우 몰드 제작 및 시작차 부품성형에 관한 연구)

  • 양화준;황보중;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.124-131
    • /
    • 2000
  • Rapid Prototyping(RP) models are no longer used only for design verification. Currently, parts built utilizing layer manufacturing technology can be employed as functional prototypes and as patterns or tools for different manufacturing processes such as vacuum casting, investment casting, injection molding, precise casting and sand casting. This trend of Rapid Prototyping application meets the requirement of concurrent engineering and its range covers a more spreaded area. The aim of this paper is saving the manufacturing lead time and cost of plastic parts having hollow space shapes used by prototype-car. Using rapid prototype patterns, made by the Selective Laser Sintering(SLS) technique, a new approach of manufacturing resin-based blow mold is discussed. It has a great potential fur making prototype-car parts with the batch size of under 200 parts, in case of rapid modification due to a subsequent design changes in developing stage. So, the process proposed in this research shows reduction of process time and manufacturing cost when compared with the conventional process such as a Zinc Alloy fur Stamping(ZAS) mold.

  • PDF