• Title/Summary/Keyword: 콘 관입시험

Search Result 144, Processing Time 0.031 seconds

Correlation Analysis between DCPT Value and SPT Value (동적콘관입시험값과 표준관입시험값의 상관성 분석)

  • Lee, Bongjik;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.23-30
    • /
    • 2014
  • In-situ penetration tests have been widely used in geotechnical engineering for site investigation in support of analysis and design. Standard Penetration Test (SPT) and Dynamic Cone Penetration Test (DCPT) are typical dynamic sounding. DCPT was originally developed as an alternative for evaluating the properties of subgrade soils. The main advantages of DCPT are that it is fast, inexpensive, and it is particularly useful in delineating areas of weak soils overlying stronger strata and in quickly assessing the variability of the soil conditions. But lack of standardization is main reason that this test method has not been advanced more in recent years. In this study, it is clarified the correlation with the SPT blow count, N from DCPT data using big DCP eqipment. Regression analysis and correlationship analysis were conducted with the data from relationship between SPT and DCPT. The analysis results showed that the convert fact are in the range of 1.12~1.31 with variation with soil property.

Study on Cone Penetration Rate and Anisotropy in Cohesive Soils (점성토에 있어서 지반의 비등방성을 고려한 콘 관입속도에 관한 연구)

  • Kim, Dae-Kyu;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.559-566
    • /
    • 2000
  • 본 연구에서는 비등방성 응력조건 하에서 콘 관입속도가 콘 관입시험 결과에 미치는 영향을 연구하기 위하여 유한요소해석 및 Calibration Chamber를 이용한 Miniature Piezocone의 관입시험이 수행되었으며 그 결과를 비교 분석하였다. 비등방성을 고려하기 위하여 Anisotropic Soil Model이 유한요소해석에 이용되었으며 LSU/CALCHAS(Louisiana State University Calibration Chamber System)가 Miniature Piezocone의 관입시험에 이용되었다. 콘 관입속도의 영향이외에도 OCR 및 필터위치의 영향을 고찰하였다.

  • PDF

Decision Method for Degree of Compaction of Subgrade Using Portable Cone Penetrometer (콘관입시험기에 의한 노상 다짐관리도 결정법)

  • 임유진;이현승;박영호;이기홍
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.161-168
    • /
    • 2003
  • 평판재하시험은 재하시험시 표층의 매우 잘 다져진 곳에 대한 지지력 계수를 획득하여 실다짐도를 과대 평가하는 결과를 초래할 수 있다. 이에 착안하여 응력도달 범위가 작은 평판재하시험을 지양하고 콘관입시험으로부터 획득되는 노상의 관입지수로부터 지반의 다짐도를 추정할 수 있는 콘관입시험기와 구동시스템 및 해석 프로그램을 개발하였다.

  • PDF

Development of Dynamic Cone Penetration Tester Module for Slope Vulnerability Assessment and Correlation of Its Results with Standard Penetration Test Values (비탈면 취약도 평가를 위한 동적콘관입시험기 모듈개발과 표준관입시험값과의 상관관계 연구)

  • Chae, Hwi-Young;Kwon, Soon-dal
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.541-547
    • /
    • 2021
  • To assess the stability of a slope and the likelihood of its loss or collapse requires information about the ground, such as the composition of the stratum and its mechanical characteristics. This information is generally gathered through standard penetration testing (SPT) and cone penetration testing. SPT is not widely used due to problems with accessing slopes, most of which are steep and without ramps. A drop cone penetrometer, a portable device that can make up for these shortcomings, can be used in a limited way in some circumstances. Therefore, we developed a portable drilling machine and a small dynamic cone penetration test module that can easily access a slope site and perform SPT. The correlation of the developed system's results with those from SPT was analyzed. Analysis of the correlation between the energy shear rate passing to the load during the different test types established that the energy shear rate is reflected in the test result. The correlation between corrected dynamic cone penetration testing and corrected SPT was Nd' = 3.13 N'.

The Estimation of the Constrained Modulus and the Coefficient of Consolidation from the Piezocone Penetration Test Data (피에조 콘 관입시험결과에 따른 구속탄성계수, 압밀계수 산정에 관한 연구)

  • Lee, Kise;Ku, Namshil;Han, Woonwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.47-55
    • /
    • 2007
  • Using the results of the Piezocone Penetration Test (PCPT) which were executed at the Yangsan-Mulgum site, the applicability of the interpretation methods for estimating the coefficient of consolidation ($C_v$) of soft clay was evaluated. At the same time, laboratory soil tests using the total of 172 undisturbed soft clay samples from the 44 regions of the Yangsan-Mulgum site were performed to study the differency in the coefficient of consolidation ($C_v$) compared to the results of PCPT. The calculated constrained modulus ($M_{\varepsilon}$) and coefficient of consolidation ($C_v$) using the results of consolidation laboratory tests which are based upon the consolidation theory of Terzaghi were compared with the predicted constrained modulus ($M_p$) and coefficient of consolidation ($C_{v-{M_p}}$) from the PCPT. The relationship between the predicted constrained modulus ($M_p$) and the calculated constrained modulus($M_c$) were showed good correlation. The $M_p$ by the Jones & Rust method were showed mostly similar to the calculated constrained modulus ($M_c$). The relationship between the coefficient of consolidation ($C_v$) obtained from the consolidation tests and the calculated coefficient of consolidation ($C_{v-{M_p}}$) were showed a linear relationship. The results of the calculated coefficient of consolidation ($C_{v-{M_p}}$) were about 54% of the value of the coefficient of consolidation ($C_v$) obtained from the consolidation tests.

  • PDF

Development of Advanced Dynamic Cone Penetration Test Apparatus and Its Application Performance Evaluation (개량식 동적 콘 관입시험기의 개발 및 적용성 평가)

  • Kim, Uk-Gie;Zhuang, Li;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.119-131
    • /
    • 2014
  • For quick and accurate ground investigation in wide construction site being not easy to access, advanced dynamic cone penetration test equipment was developed based on widely used equipment abroad. Advantages of existing equipment of portability and simple testing method were reflected in the new developed equipment. Meanwhile, by extending connection of lower rod, penetration depth is raised to 6m from 1 m of the existing equipment. Moreover, by assembly of hammer (2+3+3kg) and cone (3 types) etc., it is possible to perform test under the same conditions with those by German and Japan dynamic cone penetration test equipment (Tsukuba, PWRI and SH types). Auxiliary equipment was applied to make sure of perpendicularity as penetration depth increases. Applicability of the new developed equipment was evaluated through tests on various fields and its reliability was verified.

Scale Effects and Field Applications for Continuous Intrusion Miniature Cone Penetrometer (연속관입형 소형콘관입시험기에 대한 크기효과 및 현장적용)

  • Yoon, Sungsoo;Kim, Kyu-Sun;Lee, Jin Hyung;Shin, Dong-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2359-2368
    • /
    • 2013
  • Cone penetration tests (CPTs) have been increasingly used for site characterizations. However, the site investigations using CPTs are often limited due to soil conditions depending on the cone size and capacity of the CPT system. The small sectional area of a miniature cone improves the applicability of the CPT system due to the increased capacity of the CPT system. A continuous intrusion system using a coiled rod allows fast and cost effective site investigation. In this study, the performance of the continuous intrusion miniature cone penetration test (CIMCPT) system has been evaluated by comparison tests with the standard CPT system at several construction sites in Korea. The results show that the CIMCPT system has a same performance with the CPT system and has advantages on the mobility and applicability. According to field verification tests for scale effect evaluation, the cone tip resistance evaluated by CIMCPT overestimates by 10% comparing to standard CPTs. A crawler mounted with the CIMCPT system has been implemented to improve accessibility to soft ground, and has shown improvement over the truck type CIMCPT system. Therefore, the improved CIMCPT system can be utilized as a cost effective and highly reliable soil investigation methodology to detect the depth of soft ground and to evaluate soil classification.

Analysis of Application Cases and Evaluation of Effectiveness on Portable Dynamic Cone Penetration Test (DCPT) to Identify the Deterioration Cause of Damaged Reinforced Earth Walls (보강토옹벽의 피해원인 규명을 위한 휴대형 동적콘관입시험(DCPT) 적용사례 분석 및 효용성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.95-109
    • /
    • 2020
  • In this study, a total of six site cases were reviewed to assess the site applicability of portable dynamic cone penetration test (DCPT) by identifying the cause of damage to the damaged reinforced earth wall using portable dynamic cone penetration test. An improved dynamic concrete penetration tester was used at the site to enable ground surveys of more than 6 meters. The test results were compared with the results of the standard penetration test (SPT) and the correlation was analyzed. Through the analysis of various field application cases, it was found that portable dynamic cone penetration test was very convenient to apply at the site of the damaged reinforced earth wall, and DCPT could play a major role in identifying the cause of damage and verifying stability of the retaining wall by continuously identifying the ground strength. In addition, it was found that the results of the dynamic cone penetration test and the standard penetration test showed a correlation of N≒(1/3~2/3)·Nd in sandy soil.

Evaluation of Active Layer Depth using Dynamic Cone Penetrometer (동적 콘 관입기를 이용한 활동층 심도평가)

  • Hong, Won-Taek;Kang, Seonghun;Park, Keunbo;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • An active layer distributed on surface of an extreme cold region causes a frost heave by repeating the freezing and thawing according to the seasonal temperature change. Since the height of frost heave is greatly affected by the thickness of active layer, an accurate evaluation of the thickness of active layer is necessary for the safe design and construction of the infrastructure in the extreme cold region. In this study, dynamic cone penetrometer, which is miniaturized in-situ penetration device, is applied for the evaluation of active layer depth distribution. As the application tests, two dynamic cone penetration tests were conducted on the study sites located in Solomon and Alaska. In addition, ground temperature variations were obtained. As the results of the application tests, the depth of interface between the active layer and the permafrost was evaluated from the difference in dynamic cone penetration indexes of the active layer and the permafrost, and a layer was detected around the interface considered as an ice lens layer. Also, the interface depths between the above zero and the below zero temperature determined from the ground temperature variations correspond with the interface depths evaluated from the dynamic cone penetration tests. This study demonstrates that the dynamic cone penetrometer may be a useful tool for the evaluation of the active layer in the extreme cold region.

The Correlation Analysis between Dynamic Cone Penetration Test and Plate Loading Test Results for Evaluation of Dam Conditions (제체 상태 평가를 위한 동적 콘 관입시험과 평판재하시험 결과의 상관관계 분석)

  • Jung, Young-Hoon;Kim, Seongmin;Lim, Jeong-yeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.33-38
    • /
    • 2018
  • The internal erosion due to poor compaction of the material was the main cause of collapse of the embankment in Korea. The assessment of the compaction state of the dam body was a very important check in the safety diagnosis of the embankment. In this study, the correlation between dynamic cone penetration test and plate loading test which is the most typical compaction evaluation technique was analyzed to verify the applicability of the dynamic cone penetration test in evaluating the compaction state of the dam body. The standard penetration tests were carried out six times to define soil properties and depth of the test site. The spatial distributions were obtained by the Kriging method after 15 times of plate loading tests and 47 times of dynamic cone penetration tests. The Pearson correlation coefficient between the spatial distribution of the plate loading test and the dynamic cone penetration test spatial distribution at the constant penetration depth was calculated. The load distribution in the plate loading test and the blow counts at penetration depths of 5 cm, 10 cm and 15 cm in the dynamic cone penetration test showed a weak positive correlation.