• 제목/요약/키워드: 콘포머

검색결과 3건 처리시간 0.019초

콘포머 기반 한국어 음성인식 (A Korean speech recognition based on conformer)

  • 구명완
    • 한국음향학회지
    • /
    • 제40권5호
    • /
    • pp.488-495
    • /
    • 2021
  • 본 논문에서는 콘포머 기반 한국어 음성인식 시스템을 제안한다. 콘포머는 트랜스포머 모델에 콘볼루션신경망(Convolution Neural Network, CNN) 기능을 보강한 구조이며 광역 정보를 잘 표현할 수 있는 트랜스포머와 지역 정보를 잘 표현할 수 있는 CNN을 결합한 신경망이다. 음성인식 기본 시스템으로 트랜스포모에 기반한 음성인식시스템을 개발하였으며 언어모델로는 Long Short-Term Memory(LSTM)을 사용하였다. 콘포머 기반 음성인식시스템은 트랜스포머 대신에 콘포머를 사용하였고 언어모델로는 트랜스포머를 이용하였다. 성능 평가를 위해 AI-hub에 있는 Electronics and Telecommunications Research Institute(ETRI) 음성코퍼스를 활용하였으며 트랜스포머 기반 음성인식 시스템은 오인식률이 11.8 %이 되었으며 콘포머 기반 음성인식시스템은 오인식률이 5.7 %가 되었다. AI-hub에 있는 다른 영역의 NHN다이퀘스트 음성 코퍼스를 추가해도 유사한 성능이 유지가 되어 제안된 콘포머 음성인식시스템의 유효성을 입증하였다.

피쳐 퓨전 모듈을 이용한 콘포머 기반의 노인 음성 인식 (Conformer-based Elderly Speech Recognition using Feature Fusion Module)

  • 이민식;김지희
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.39-43
    • /
    • 2023
  • 자동 음성 인식(Automatic Speech Recognition, ASR)은 컴퓨터가 인간의 음성을 텍스트로 변환하는 기술이다. 자동 음성 인식 시스템은 다양한 응용 분야에서 사용되며, 음성 명령 및 제어, 음성 검색, 텍스트 트랜스크립션, 자동 음성 번역 등 다양한 작업을 목적으로 한다. 자동 음성 인식의 노력에도 불구하고 노인 음성 인식(Elderly Speech Recognition, ESR)에 대한 어려움은 줄어들지 않고 있다. 본 연구는 노인 음성 인식에 콘포머(Conformer)와 피쳐 퓨전 모듈(Features Fusion Module, FFM)기반 노인 음성 인식 모델을 제안한다. 학습, 평가는 VOTE400(Voide Of The Elderly 400 Hours) 데이터셋으로 한다. 본 연구는 그동안 잘 이뤄지지 않았던 콘포머와 퓨전피쳐를 사용해 노인 음성 인식을 위한 딥러닝 모델을 제시하였다는데 큰 의미가 있다. 또한 콘포머 모델보다 높은 수준의 정확도를 보임으로써 노인 음성 인식을 위한 딥러닝 모델 연구에 기여했다.

  • PDF

콘포머 기반 FastSpeech2를 이용한 한국어 음식 주문 문장 음성합성기 (A Korean menu-ordering sentence text-to-speech system using conformer-based FastSpeech2)

  • 최예린;장재후;구명완
    • 한국음향학회지
    • /
    • 제41권3호
    • /
    • pp.359-366
    • /
    • 2022
  • 본 논문에서는 콘포머 기반 FastSpeech2를 이용한 한국어 메뉴 음성합성기를 제안한다. 콘포머는 본래 음성 인식 분야에서 제안된 것으로, 합성곱 신경망과 트랜스포머를 결합하여 광역과 지역 정보를 모두 잘 추출할 수 있도록 한 구조다. 이를 위해 순방향 신경망을 반으로 나누어 제일 처음과 마지막에 위치시켜 멀티 헤드 셀프 어텐션 모듈과 합성곱 신경망을 감싸는 마카론 구조를 구성했다. 본 연구에서는 한국어 음성인식에서 좋은 성능이 확인된 콘포머 구조를 한국어 음성합성에 도입하였다. 기존 음성합성 모델과의 비교를 위하여 트랜스포머 기반의 FastSpeech2와 콘포머 기반의 FastSpeech2를 학습하였다. 이때 데이터셋은 음소 분포를 고려한 자체 제작 데이터셋을 이용하였다. 특히 일반대화 뿐만 아니라, 음식 주문 문장 특화 코퍼스를 제작하고 이를 음성합성 훈련에 사용하였다. 이를 통해 외래어 발음에 대한 기존 음성합성 시스템의 문제점을 보완하였다. ParallelWave GAN을 이용하여 합성음을 생성하고 평가한 결과, 콘포머 기반의 FastSpeech2가 월등한 성능인 MOS 4.04을 달성했다. 본 연구를 통해 한국어 음성합성 모델에서, 동일한 구조를 트랜스포머에서 콘포머로 변경하였을 때 성능이 개선됨을 확인하였다.