• Title/Summary/Keyword: 콘텐츠 추천 알고리즘

Search Result 71, Processing Time 0.024 seconds

A Consumer Perception based on the Type of Recommender System : A Privacy Calculus Perspective (상품 추천 서비스 유형에 따른 소비자 반응 연구 : 프라이버시 계산 모델을 중심으로)

  • Choi, Hye-Jin;Cho, Chang-Hoan
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.254-266
    • /
    • 2020
  • The purpose of this study is to analyze the influence of the type of recommender system on consumer's perceived benefit and privacy risk. The result showed that the perceived usefulness and intension to click was high in the order of Hybrid-filtering, Bestseller, and SNS-based system. Privacy concern was high in order of SNS-based system, Hybrid-filtering, and Bestseller. Moderating effects of perceived personalization on the type of recommender system and perceived usefulness were significant. Finally perceived usefulness had positive effect, and privacy concern had negative effect on consumer's intension to click. This study has significant implications for digital marketing bt comparing consumer responses according to the type of recommended service. The result of this study can be helpful for providing and developing future recommender service.

Method of Service Curation based on User Log Analysis (사용자 이용로그 분석에 기반한 서비스 큐레이션 방법)

  • Hwang, Yun-Young;Kim, Dou Gyun;Kim, Bo-Ram;Park, Seong-Eun;Lee, Myunggyo;Yoon, Jungsun;Suh, Dongjun
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.701-709
    • /
    • 2018
  • Our research team implemented and operated the system by analyzing the membership information and identifying the different preferences for each group and providing the results of the recommendation based on accumulated membership information and activity log data to the individual. The utilization log was followed up. We analyzed how many people use recommended services and analyzed whether there are any factors other than the personalization service algorithm that affect the service utilization of the system with personalization. In addition, we propose recommendation methods based on behavioral changes when incentives are given through analyzing patterns of users' usage according to methods of recommending services and contents that are often used based on analysis contents.

Meaning of Rating Beyond Recommendation: Explorative Study on the Meaning and Usage of Content Evaluation Based on the User Experience Stages of Personalized Recommender Service (평점의 의미: 개인화 추천 서비스에서 사용자 경험단계에 따른 콘텐츠 평가의 의미와 활용에 대한 탐색적 연구)

  • Hyundong Kim;Hae-jeong Hwang;Kieun Park;Mingu Kang;Jeonghun Kim;Inseong Lee;Jinwoo Kim
    • Information Systems Review
    • /
    • v.18 no.3
    • /
    • pp.155-183
    • /
    • 2016
  • Research on personalized recommender service that uses big data has gained considerable attention given the increasing volume of contents being created. This development indicates the need for service providers to collect personal information and content rating data to personalize content recommendations. Previous studies on this topic proposed algorithms to offer improved recommendations using minimal rating data or service designs and increase the number of ratings. However, limited studies have been conducted on the factors that motivate the ratings input of users, as well as the factors that influence their continuous usage of recommender service. The present study explored the factors that motivate users to enter ratings by conducting in-depth interviews with users who use recommender services. The meanings of these ratings were also explored. Results show that the meaning and usage range of ratings differed based on the stage of a user's with utilization of the service. When users input an initial rating, they treat such a rating as a database to save the impression of a past experience. Such a rating is then used as a tool to reflect the current feeling and thoughts of a user. In the end, users were not only interested in their own rating system, but they also actively sought out the meaning of the rating systems of others and utilized them. Users also expressed mistrust in the recommendations of the service because they were aware of the limitation of the algorithms. This study identified a number of practical implications regarding recommender services.

Crowd-Curation and Algorithmic Curation Models for Museum Exhibitions (뮤지엄에서의 크라우드 큐레이션 및 알고리즘 기반 전시 큐레이션 모델)

  • Lee, Jeong Sun;Yeo, Woon Seung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.25-26
    • /
    • 2019
  • 소셜 미디어(social media)가 급속히 발달하고 대중화되면서, 뮤지엄(museum)의 관람객은 시 공간의 제약 없이 뮤지엄의 콘텐츠를 향유하는 동시에, 전통적인 관람객의 역할을 넘어 매개자(mediator), 프로슈머(prosumer), 그리고 크리에이터(creator)로 활동하고 있다. 또한, 뮤지엄도 고유의 업무 수행에 다수 관람객의 참여를 유도하며 관람객과 적극적으로 소통하고 있다. 이러한 흐름 속에, 이화여자대학교박물관에서는 소셜 미디어를 기반으로 사전 설문조사를 진행하여 작품에 대한 설문 참여자의 반응을 수집한 후 이를 바탕으로 큐레이션에 대중의 선호도를 반영하는 '관람객 참여전시'를 개최하였다. 더 나아가 알고리즘 기반 전시 큐레이션 모델도 개발하였는데, 이 모델은 앞의 관람객 참여전시에서 얻은 데이터를 활용하여 컴퓨터가 일반 관람객의 개인적 취향에 부합하는 작품을 자동으로 추천하고, 이를 바탕으로 개별 관람객에게 '개인적으로 최적화된' 전시를 구성할 수 있는 기반을 제공한다. 본 논문은 이러한 이화여자대학교박물관의 최신 전시활동을 소개하며, 초연결, 초지능화의 시대에 관람객들이 뮤지엄에 다양하게 참여하고 함께 소통할 수 있는 방법을 모색하고자 한다.

  • PDF

Examining Factors Affecting the Binge-Watching Behaviors of OTT Services (OTT(Over-the-Top) 서비스의 몰아보기 시청행위 영향 요인 탐색)

  • Hwang, Kyung-Ho;Kim, Kyung-Ae
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.181-186
    • /
    • 2020
  • The purpose of this study is to empirically examine the factors affecting the binge-watching behaviors of OTT service users by using a multi-layer perceptron (MLP) artificial neural network. All samples (n=1,000) were collected from 'A survey on user awareness in OTT service' published by a Media Research Center of the Korea Press Foundation in 2018. Our research model includes one dependent variable which is binge-watching behaviors on OTT service and five independent variables such as gender, age, frequency of service usage, users' satisfaction with content recommendation algorithm, and content types mainly consumed. Our findings demonstrate that age, frequency of service usage, users' satisfaction with content recommendation algorithms, and certain types of contents (e.g., Korean dramas, Korean films, and foreign dramas) were found to be highly related to binge-watching behavior on OTT services.

Mobile Context Based User Behavior Pattern Inference and Restaurant Recommendation Model (모바일 컨텍스트 기반 사용자 행동패턴 추론과 음식점 추천 모델)

  • Ahn, Byung-Ik;Jung, Ku-Imm;Choi, Hae-Lim
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.535-542
    • /
    • 2017
  • The ubiquitous computing made it happen to easily take cognizance of context, which includes user's location, status, behavior patterns and surrounding places. And it allows providing the catered service, designed to improve the quality and the interaction between the provider and its customers. The personalized recommendation service needs to obtain logical reasoning to interpret the context information based on user's interests. We researched a model that connects to the practical value to users for their daily life; information about restaurants, based on several mobile contexts that conveys the weather, time, day and location information. We also have made various approaches including the accurate rating data review, the equation of Naïve Bayes to infer user's behavior-patterns, and the recommendable places pre-selected by preference predictive algorithm. This paper joins a vibrant conversation to demonstrate the excellence of this approach that may prevail other previous rating method systems.

A Study on Design and Implementation of Personalized Information Recommendation System based on Apriori Algorithm (Apriori 알고리즘 기반의 개인화 정보 추천시스템 설계 및 구현에 관한 연구)

  • Kim, Yong
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.23 no.4
    • /
    • pp.283-308
    • /
    • 2012
  • With explosive growth of information by recent advancements in information technology and the Internet, users need a method to acquire appropriate information. To solve this problem, an information retrieval and filtering system was developed as an important tool for users. Also, users and service providers are growing more and more interested in personalized information recommendation. This study designed and implemented personalized information recommendation system based on AR as a method to provide positive information service for information users as a method to provide positive information service. To achieve the goal, the proposed method overcomes the weaknesses of existing systems, by providing a personalized recommendation method for contents that works in a large-scaled data and user environment. This study based on the proposed method to extract rules from log files showing users' behavior provides an effective framework to extract Association Rule.

A Study on Recommendation Technique Using Mining and Clustering of Weighted Preference based on FRAT (마이닝과 FRAT기반 가중치 선호도 군집을 이용한 추천 기법에 관한 연구)

  • Park, Wha-Beum;Cho, Young-Sung;Ko, Hyung-Hwa
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.419-428
    • /
    • 2013
  • Real-time accessibility and agility are required in u-commerce under ubiquitous computing environment. Most of the existing recommendation techniques adopt the method of evaluation based on personal profile, which has been identified with difficulties in accurately analyzing the customers' level of interest and tendencies, as well as the problems of cost, consequently leaving customers unsatisfied. Researches have been conducted to improve the accuracy of information such as the level of interest and tendencies of the customers. However, the problem lies not in the preconstructed database, but in generating new and diverse profiles that are used for the evaluation of the existing data. Also it is difficult to use the unique recommendation method with hierarchy of each customer who has various characteristics in the existing recommendation techniques. Accordingly, this dissertation used the implicit method without onerous question and answer to the users based on the data from purchasing, unlike the other evaluation techniques. We applied FRAT technique which can analyze the tendency of the various personalization and the exact customer.

Curation Service Implementation using Machine Learning Algorithm (기계학습 알고리즘을 이용한 Curation 서비스 구현)

  • Lee, Hyung Ho;Lee, Hak Jae;Kim, Tae Su;Kim, Mi Hyun
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.118-125
    • /
    • 2020
  • This paper is conducted for automatically recommending and providing information services desired by users on websites of local governments and public institutions with vast amounts of information, In this system, we defined a method of collecting data based on the SiiRU CMS system that collects and preprocesses data, and a study that provides curation services (contents and menus) to users through a collaborative filtering algorithm based on machine learning. Also, the data used in the paper is conducted based on about 1 million data collected in 2019. The analyzed data can provide important information that cannot be easily accessed by providing a cloud tag service or recommended menu for users to conveniently view, and the environment configuration that can realize this service to local governments and public institutions is also provided.

A Study on Social Contents-Recommendation method using Data Mining and Collective Intelligence (데이터 마이닝과 집단 지성 기법을 활용한 소셜 콘텐츠 추천 방법에 대한 연구)

  • Kang, Daehyun;Park, Hansaem;Lee, Jeungmin;Kwon, Kyunglag;Chung, In-Jeong
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.1050-1053
    • /
    • 2014
  • 웹 기반 서비스의 발전과 스마트 기기의 보급으로 사용자들은 다양한 웹 서비스들을 이용할 수 있게 되었고, 소셜 웹과 같은 사람들 간의 관계를 형성함으로써 정보를 주고받는 서비스에 접근하여 자신만의 콘텐츠를 생성, 공유하기가 용이해졌다. 그러나 소셜 웹 사용자들이 증가하고 지식의 양이 늘어남에 따라, 방대한 양의 지식들 중 필요한 정보만을 효율적으로 창출해내고자 하는 연구 또한 시도되어 왔다. 그러나, 기존의 방법은 다수의 서비스 사용자들의 공통적인 관심사가 반영된 결과를 도출해내기에는 부족하다는 단점이 있었다. 그리하여, 본 논문에서는 집단 지성 알고리즘과 의사 결정 나무를 활용하여 소셜 웹을 이용하는 사용자들의 태그와 URL 정보를 토대로 트렌드를 분석, 콘텐츠를 추천하는 방법을 제안하고, 이를 통하여 다수 사용자들의 기호가 반영된 다양한 정보들을 소셜 웹 사용자들에게 제공해줄 수 있음을 보인다.