The progress of computers and Web has given rise to a rapid increase of the quantity of the useful information, which is making the demand of recommender systems widely expanding. Like in other domains, a recommender system in a digital library is important, but there are only a few studies about the recommender system of research papers, Moreover none is there in korea to our knowledge. In the paper, we seek for a way to develop the NDSL recommender system of research papers based on the survey of related studies. We conclude that NDSL needs to modify the way to collect user's interests from explicit to implicit method, and to use user-based and memory-based collaborative filtering mixed with contents-based filtering(CF). We also suggest the method to mix two filterings and the use of personal ontology to improve user satisfaction.
Recently, as SNS services have been increased, studies on recommendation schemes have been actively done. Recommendation scheme provides various favorable or needed services with users on real time. Group recommendation provides users with suitable groups based on their preference. In this paper, we propose a new group recommendation scheme considering user profiles and collaborative filtering in social networks. The proposed scheme can solve the problems of the static profile based group recommendation scheme because it collects the recent group activities and updates user profiles. It also recommends the more various groups by reflecting the similar tendencies of other users within a group through collaborative filtering. Our experimental results show that the proposed scheme recommends various groups that significantly considers the user's changing preferences compared to the existing scheme.
Journal of the Korea Society of Computer and Information
/
v.15
no.2
/
pp.135-146
/
2010
In this paper, we propose an Recommendation System for supporting self-directed learning on e-learning marketplace. The key idea of this system is recommendation system using revised collaborative filtering to support marketplace. Exisiting collaborative filtering method consists of 3 stages as preparing low data, building familiar customer group by selecting nearest neighbor, creating recommendation list. This study designs recommendation system to support self-directed learning by using collaborative filtering added nearest neighbor learning course that considered industry and learning level. This service helps to select right learning course to learner in industry. Recommendation System can be built by many method and to recommend the service content including explicit properties using revised collaborative filtering method can solve limitations in existing content recommendation.
Along with the advent of ubiquitous computing environment, it is becoming a part of our common life style that the demands for enjoying the wireless internet using intelligent portable device such as smart phone and iPad, are increasing anytime or anyplace without any restriction of time and place. The recommending service becomes a very important technology which can find exact information to present users, then is easy for customers to reduce their searching effort to find out the items with high purchasability in e-commerce. Traditional mining association rule ignores the difference among the transactions. In order to do that, it is considered the importance of type of merchandise or service and then, we suggest a new recommending service using mining sequential pattern based on weight to reflect frequently changing trends of purchase pattern as time goes by and as often as customers need different merchandises on e-commerce being extremely diverse. To verify improved better performance of proposing system than the previous systems, we carry out the experiments in the same dataset collected in a cosmetic internet shopping mall.
Kim, Dae-Gun;Song, Sung-Keun;Lee, Kang-Lyul;Youn, Hee-Yong
Proceedings of the Korean Society of Computer Information Conference
/
2010.07a
/
pp.261-264
/
2010
국내외적으로 IPTV 표준화 및 서비스 기술에 대한 연구가 활발히 진행되고 있고, 국제적으로는 Mobile IPTV를 위한 새로운 기술 개발 및 관련 표준 기술을 선점하기 위해 경쟁이 치열하게 전개되고 있다. 하지만 콘텐츠 다양화와 대량화는 사용자에게 원하는 콘텐츠를 발견할 수 있는 가능성만을 제공할 뿐 사용자가 원하는 콘텐츠를 검색하는데 많은 시간과 노력을 낭비 하게 한다는 문제점이 있다. 이에 본 과제는 온톨로지를 활용하여 Mobile IPTV 관련 기술 연구를 기반으로 효율적인 Mobile IPTV 서비스를 위한 콘텐츠 추천 시스템과 사용자 선호에 따른 온톨로지 구축을 제안한다.
Song, Ju-Hong;Hong, In Hwa;Kim, Chan Gyu;Moon, Nam-Mee
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2010.11a
/
pp.57-58
/
2010
UCC 제작자에겐 기존의 추천 서비스와는 차별화된 저작권과 저작 목적 등을 고려한 별도의 추천서비스가 필요하다. 본 논문에선 UCC를 제작하는데 있어 발생하는 저작권문제를 효과적으로 해결하기 위해 UCC 제작 시 참조된 UCC들의 정보를 메타데이터의 reference 요소로 기재할 수 있도록 하였으며, UCC 제작 사용자에게 특화된 추천서비스를 제공하기 위해 제작된 UCC의 참조 데이터를 이용한 협업 필터링 기반의 추천 시스템을 구성하고 있다. 추천시스템은 메타데이터의 tag, reference 요소를 이용해 참조된 UCC 그룹군에서 제작자가 참조한 UCC와 유사한 참조 UCC를 추천 리스트로 만들어서 제공한다. 향후 본 시스템의 효율성 검증을 통해 UCC 제작에 있어 보다 효율적이고 제작자 편이성이 높은 제작자 맞춤형 UCC 추천 서비스가 IPTV, SmartTV등의 융합형 방송서비스 통해 제공될 수 있을 것 이다.
Proceedings of the Korean Society of Computer Information Conference
/
2015.01a
/
pp.47-50
/
2015
TV는 타 도메인과 달리, 사전에 정해진 시간에 콘텐츠가 방영된다. 그러므로 TV 프로그램 추천 시스템은 시청자의 현재 시각(time-context)을 고려해야 한다. 시간 기반의 TV 프로그램 추천 방법이 다수 연구되었지만, 대부분의 기존 연구는 특정 시간대(timeslot)에서의 시청자의 선호도를 계산하는 데에만 집중되어 있고, 시청 내역 전체기간에서의 선호도를 고려하지 않은 문제점이 있다. 이러한 문제를 해결하기 위해, 시청자의 지역 선호도와 전역 선호도를 모두 고려한 시간 기반의 TV 프로그램 추천기법을 제안한다. 이를 위해 제안 방법에서는 시간대의 길이에 따라 여러 가지 선호도 모델을 사용한다. 여러 개의 선호도 모델로부터 산출된 선호도를 병합하여 가장 선호도가 높은 TV 프로그램을 추천한다. 실 데이터를 이용한 실험을 통해 기준방식과 비교함으로써, 제안 방법의 효용성을 검증하였다.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.493-496
/
2018
추천 시스템은 다양한 분야에 적용되는 기술로서 활발한 연구가 진행되고 있고 기존 추천 시스템의 성능을 높이기 위해서 더욱 개인화된 차세대 추천 시스템의 필요성이 대두되고 있다. 본 논문은 하이퍼 개인화 범주에 속하는 사후 필터링기법을 사용한 실시간 상황 인식 추천 시스템을 제안한다. 실시간 상황 인식 추천 시스템은 사용자 행동과 계속적인 동기화로 현재 상황에 가장 적합한 추천 목록을 생성하기 때문에 사용자 기반 협업 필터링 (User Based Collaborative Filtering), 콘텐츠 기반 필터링(Content-based Filtering), 특이값 분해(Singular Value Decomposition)보다 훨씬 미래 지향적인 추천 시스템이다.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.552-554
/
2023
웹소설 시장의 성장에 따라 웹소설 추천 시스템의 중요성이 높아지고 있다. 본 연구에서는 작품의 특성 및 선호도를 나타낼 수 있는 다양한 데이터를 활용하여 추천시스템을 구현하고 그 성능을 평가하여 표지 이미지와 작품 특성을 모두 고려한 멀티 모달 추천 시스템이 가장 효율적임을 보여주었다. 연구 결과, 단일 변수 추천에서는 작품 소개글과 표지 이미지 기반 추천이 가장 좋은 성능을 보였고, 멀티 모달 추천 시스템에서는 작품 소개글, 이미지, 키워드 순으로 성능에 좋은 영향을 끼치는 것으로 나타났다. 이번 연구 결과는 한국콘텐츠진흥원에서 조사한 웹소설 이용자 실태조사와는 조금 다른 결과를 보여주었다. 설문조사에서는 인기도를 웹소설 선택 시 가장 중요한 영향으로 봤으나, 본 연구에서는 작품 소개글이 가장 중요한 영향을 미친다는 결과가 나타났다. 이러한 연구 결과는 웹소설 추천 시스템의 개발과 운영에 있어서 중요한 참고 자료가 될 것으로 예상된다.
Proceedings of the Korea Contents Association Conference
/
2015.05a
/
pp.41-42
/
2015
사람이 영화를 이해하는 주된 내용은 스토리이다. 따라서 영화를 검색하거나 추천하기 위해서는 스토리 차원의 영화 분석이 선행되어야 한다. 더욱이 영화 추천이나 검색을 위해서는 영화간의 스토리차원의 비교를 수행할 수 있는 방법론에 대한 연구가 필요하다. 이를 위해 본 논문에서는 등장인물 기반으로 하는 영화 정규화 방법론을 소개하고 군집화를 통해 그 의미를 고찰한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.