• Title/Summary/Keyword: 콘크리트 표면저항

Search Result 134, Processing Time 0.022 seconds

Influence of steel fiber contents on corrosion resistance of steel reinforcement (강섬유 혼입량이 철근 부식저항성능에 미치는 영향)

  • Kim, Seong-Do;Moon, Do-Young;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.283-293
    • /
    • 2015
  • In order to evaluate corrosion resistance of steel fiber-reinforced concrete, accelerated chloride migration and surface resistivity tests were conducted. In addition air content of fresh concrete, compressive strength and water absorption were measured for investigating fundamental characteristics of concrete. Two different water-cement ratios(0.44, 0.5) and three steel fiber contents(0.25%, 0.5%, 1%) were considered as variables. Note that all specimens cast with same compaction work. As a results, corrosion resistance decreased as steel fiber contents increased regardless of water-cement ratio when the concrete was compacted with same amount of work done. However, for concrete with same steel fiber content, the lower water-cement ratio showed the better corrosion resistance. It is found that enhancement of fluidity and enough compaction should be done for corrosion resistance of SFRC.

Assessment on Carbonation Resistance of Products for Protection and Repair of Concrete Structures (콘크리트 구조물 보수용 단면복구재 및 표면보호재의 중성화 저항성 평가)

  • Park, Sang-Soon;Ryu, Chung-Hyun;Park, Hun-Il;Shin, Hong-Chul;Ryu, Byung-Cheol;Kim, Young-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.625-628
    • /
    • 2008
  • This study is performed to evaluate the carbonation resistance by measuring carbonation penetration depth and diffusion equivalent air layer thickness for 3 types of repair materials and 2 types of surface protection materials. Diffusion equivalent air layer thickness($S_D$) is thickness of a static air layer that possesses, under the same conditions, the same carbon dioxide permeability as the coating in accordance BS EN 1062-6. There is a significant advantage that continuous test is possible because it does not destroy the specimen. From experiment results, it is concluded that determination of carbon dioxide permeability is effective to evaluate for surface coating materials.

  • PDF

Setting Time Evaluation of High Flowable Ternary Concrete Mix Using Durometer (듀로미터를 이용한 3성분계 고유동 콘크리트의 응결시간 추정)

  • Han, Min-Cheol;Lee, yuk-Ju
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2020
  • The aim of the research is to evaluate the feasibility of durometer for assessing setting time of the concrete by comparing it with the currently used proctor penetration test method to improve the surface finishing timing determining method generally determined based on the experience of the worker. As a research result, the correlation between suggesting method using durometer with currently used proctor penetration test method was high enough. Hence, on the surface of the concrete, the initial setting time and the final setting time could be designated as 41 HD with C-type, and 11 HD with D-type, respectively. Therefore, the durometer can be used as a portable setting time evaluation device with the easiness of handling and measuring for determining concrete surface finishing timing quantitatively.

Enhanced Durability Performance of Rock-Filled-Dam Face-Slab Concrete using Fly Ash and Blended PVA Fiber (플라이애시와 PVA 섬유를 혼입한 댐 표면 차수벽 콘크리트의 내구성능 평가)

  • Woo, Sang-Kyun;Won, Jong-Pil;Bae, Doo-San;Chu, In-Yeop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.140-148
    • /
    • 2016
  • This study examined the durability of face-slab concrete in Concrete-Faced Rock-filled Dams(CFRDs). The durability of face-slab concrete can be improved by optimizing the amount of fly ash in the cement mixture. Durability tests including plastic shrinkage, permeability, abrasion resistance, and repeated freezing and thawing were done on face-slab concrete specimens with different amounts of fly ash and blended PVA(Poly Vinyl Alcohol) fibre. When the effect of the fly ash content on concrete durability was evaluated, the results showed that a 15% fly ash content and 0.1% blended PVA fiber yielded the optimum durability level for concrete-faced rock-filled dams.

An Experimental Evaluation on Performance of Surface Protector for Concrete Structures (콘크리트 구조물 표면 보호재의 성능에 대한 실험적 평가)

  • Nam, Yong-Hyuk;Chung, Young-Jun;Jang, Suk-Hwan;An, Young-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.157-163
    • /
    • 2006
  • This study is on the evaluation of double surface protection method using water repellent primer and final top coat to protect concrete. Water repellent agent has been applied on the final top coat to protect concrete. However, to make up for the weakness to the ultraviolet of the water repellent, the work procedure of these protectors is done vice versa. This combination of protectors was compared with existing ones in this study. Even though the final top coat was applied on the water repellent primer, its adhesive strength met to KS F 4936-' 03 with other protectors used in this study. All surface protectors used in this study were excellent in protecting concrete. Especially, in case of applying with final top coat in conjunction with water repellent primer, the resistance against chloride ion penetration and neutralization by $CO_2$ was more efficient than other surface protectors used in this study under this given condition.

An Experimental Study of Flexural Strengthening Method of Reinforced Concrete Beams with Near Surface Mounted CFRP Strips (탄소섬유판 (CFRP) 표면매립 (NSM) 공법을 이용한 콘크리트 구조물 휨 보강에 관한 실험 연구)

  • Lim, Dong Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.131-136
    • /
    • 2013
  • The purpose of this study is to establish the flexural strengthening method of the concrete members. To accomplish this objective, a total of seven concrete beams were tested. From this study, it is found that the initial flexural stiffness and strength of the beams reinforced with NSM CFRP strips were significantly improved compared to the beam without CFRP strip. Failure of the beam reinforced with NSM strips is initiated by failure of NSM strips, eventually sudden explosive compressive failure in the loaded region. This strengthening method combined with NSM CFRP strips and high performance mortar for concrete cover recovery is evaluated by a good strengthening method for the strength, durability and good appearance of concrete structures.

The Fractural-Mechanical Properties and Durability of Lightweight Concrete Using the Synthetic Lightweight Aggregate (합성경량골재(SLA)를 사용한 경량콘크리트의 파괴, 역학적 특성 및 내구성)

  • Jo Byung-Wan;Park Seung-Kook;Park Jong-Bin;Daniel C. Jansen
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.19-25
    • /
    • 2005
  • Recycling of waste materials in the construction Industry is a useful method that can cope with an environment restriction of every country. In this study, synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5 mm were produced with fly ash contents of 0, 35, and $80\%$ by the total mass of the aggregate. An expanded clay lightweight aggregate and a normal-weight aggregate were used as comparison. Gradation, density, and absorption capacity are reported for the aggregates. Five batches of concrete were made with the different coarse aggregate types. Mechanical properties of the concrete were determined including density, compressive strength, elastic modulus, splitting tensile strength, fracture toughness, and fracture energy. Salt-scaling resistance, a concrete durability property, was also examined. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As nv ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved. Excellent salt-scaling resistance was obtained with the synthetic lightweight aggregate containing 80 percent fly ash.

Investigation of Electrical Resistance Properties in Surface-Coated Lightweight Aggregate (표면코팅 경량골재의 전기저항 특성)

  • Kim, Ho-Jin;Kim, Chang-Hyun;Choi, Jung-Wook;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.727-738
    • /
    • 2023
  • In concrete, the interface between the aggregate and cement paste is often the most critical factor in determining strength, representing the weakest zone. Lightweight aggregate, produced through expansion and firing of raw materials, features numerous surface pores and benefits from low density; however, its overall aggregate strength is compromised. Within concrete, diminished aggregate strength can lead to aggregate fracture. When applying lightweight aggregate to concrete, the interface strength becomes critical due to the potential for aggregate fracture. This study involved coating the surface of the aggregate with blast furnace slag fine powder to enhance the interfacial strength of lightweight aggregate. The impedance of test specimens was measured to analyze interface changes resulting from this surface modification. Experimental results revealed a 4% increase in compressive strength following the coating of the lightweight aggregate surface, accompanied by an increase in resistance values within the impedance measurements corresponding with strength enhancement.

Experimental Study on Structural Behavior of Interfaces of Double Composite Girder Using the 80 MPa Concrete (80 MPa급 콘크리트를 활용한 이중합성 거더의 수평접합면 구조거동에 관한 실험적 연구)

  • Yang, In-Wook;Lim, Eol;Ha, Tae-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.400-413
    • /
    • 2016
  • The horizontal shear capacity when the flange of a steel girder is replaced with 80 MPa concrete is important for its structural safety. In this study, 6 specimens with different interface conditions were designed and fabricated based on the Limit State Design Code on Korean Highway Bridges and static tests were performed to measure the horizontal shear capacity. Not only the resistance factors of the stud shear connector, concrete and reinforcement, but also the surface conditions of the casing concrete and spacing of the horizontal shear reinforcements were used as the experimental variables. The experiments showed that the interfaces between the steel girder and the concrete flange have stronger joint performance than those between the concrete flange and deck slab. To ensure the composite action in the plastic zone, the conservative horizontal shear reinforcement is more important than the roughness in the concrete face.