• 제목/요약/키워드: 콘크리트 포장 시멘트

검색결과 143건 처리시간 0.018초

공항포장 시멘트안정처리기층에 적용하기 위한 투수콘크리트 개발에 관한 기초연구 (Fundamental Study on Pervious Concrete Materials for Airport Pavement Cement Treated Base Course)

  • 김승원;오지현;장봉진;주민관;김인태;박철우
    • 한국도로학회논문집
    • /
    • 제15권4호
    • /
    • pp.65-73
    • /
    • 2013
  • PURPOSES : As a research to develop a cement treated base course for an airport pavement which can enhance its drainage, this paper investigated the strength, infiltration performance and durability of the pervious concrete with respect to maximum coarse aggregate sizes and compaction methods. METHODS : This study measured compressive strength, infiltration rate, continuous porosity and freeze-thaw resistance of pervious concrete specimens, which were fabricated with five different compaction methods and different maximum aggregate sizes. In addition, in order to reduce the usage of Portland cement content and to enhance environment-friendliness, a portion of the cement was replaced with Ground Granulated Blast Furnace Slag (GGBS). RESULTS: Compressive strength requirement, 5 MPa at 7 days, was met for all applied compaction methods and aggregate sizes, except for the case of self-compaction. Infiltration rate became increased as the size of aggregate increased. The measured continuous porosities varied with the different compaction methods but the variation was not significant. When GGBS was incorporated, the strength requirement was successfully satisfied and the resistance to freezing-thawing was also superior to the required limit. CONCLUSIONS: The infiltration rate increased as the maximum size of aggregate increased but considering construct ability and supply of course aggregate, its size is recommended to be 25mm. With the suggested mix proportions, the developed pervious concrete is expected to successfully meet requirements for strength, drainage and durability for cement treated base or subbase course of an airport pavement.

재생 이산화티탄을 혼입한 모르타르의 NOx 저감률 민감도 분석 (Sensitivity of NOx Removal on Recycled TiO2 in Cement Mortar)

  • 이인규;김진희;김종호;노영숙
    • 한국건설순환자원학회논문집
    • /
    • 제4권4호
    • /
    • pp.388-395
    • /
    • 2016
  • 본 논문에서는 폐수슬러지에서 제조된 재활용 이산화티탄($TiO_2$)을 혼입한 시멘트 모르타르의 NOx 저감 성능에 대해 고찰하였다. 일반적으로, 이산화티탄은 클러스터 형태로 입자가 붙어 있어, 시멘트의 응결과 경화 전에 타설체 하면에 침강하는 특징이 있다. 그 결과로 타설체의 상면과 하면에는 이산화티탄의 분포도가 서로 상당한 차이를 나타내고, 광촉매 효과도 하면에서 우수하게 나타난다. 건물이나 주택과 같은 건축구조물에서는 이를 해결하기 위해, 이산화티탄을 혼입한 프리캐스트 제품을 미리 제작 후, 조립 시에는 타설 시 상면과 하면을 뒤집어 거치하여 상대적으로 높은 이산화티탄 분포면을 대기에 노출시키는 방식을 사용한다. 그러나 콘크리트 도로포장과 같은 현장 타설의 경우, 상면과 하면을 뒤집어 거치할 수 없기 때문에 이산화티탄의 분산성은 중요하다. 이를 개선시키기 위한 본 논문의 결과로 실리카퓸, 고성능감수제, 증점제, 고로슬래그 등 전형적인 시멘트성 재료의 분산에 기여하는 재료는 이산화티탄 클러스터의 분산효과에 미미한 영향을 주었다. 급결제, 발포제, 작은 크기의 잔골재의 조합이 이산화티탄 클러스터의 분산성을 개선하였다. 분산성 개선에도 불구하고, 타설체 상면과 하면의 NOx 제거효율은 하면에 큰 효율을 지속적으로 나타내었고, 이는 표면에 분포하는 공극량에 따라 달라지는 것을 디지털 표면 이미지 분석을 통하여 확인하였다. 많은 공극분포를 갖는 표면은 상대적으로 매끄러운 표면에 비해 NO가스 흡착을 기본적으로 높이게 되고, 이를 기준으로 상대적인 NOx 제거효율이 높아지는 것으로 사료된다.

투.보수성 시멘트 콘크리트 포장의 열물성 및 수분보유특성이 표면온도에 미치는 영향 (Effects of Thermal Properties and Water Retention Characteristics of Permeable Concrete Pavement on Surface Temperature)

  • 류남형;유병림
    • 한국조경학회지
    • /
    • 제34권1호
    • /
    • pp.21-36
    • /
    • 2006
  • This study was undertaken to analyze the effects of pavement thermal properties and water retention characteristics on the surface temperature of the gray permeable cement concrete pavement during the summer. Following is a summary of major results. 1) The hourly surface temperature of pavement could be well predicted with a heat transfer model program that incorporated the input data of major meteorological variables including solar radiation, atmospheric temperature, dew point, wind velocity, cloudiness and the evaporation rate of the pavements predicted by the time domain reflectometry (TDR) method. 2) When the albedo was changed to 0.5 from an arbitrary starting condition of 0.3, holding other variables constant, the peak surface temperature of the pavement dropped by 11.5%. When heat capacity was changed to $2.5\;kJm^{-3}K^{-1}\;from\;1.5\;kJm^{-3}K^{-1}$, surface temperature dropped by 8.0%. When daily evaporation was changed to 1 mm from 2 mm, temperature dropped by 5.7%. When heat conductivity was changed to $2.5\;Wm^{-1}K^{-1}\;from\;1.5\;Wm^{-1}K^{-1}$, the peak surface temperature of the pavement fell by 1.2%. The peak pavement surface temperature under the arbitrary basic condition was $24.46^{\circ}C$ (12 a.m.). 3) It accordingly became evident that the pavement surface temperature can be most effectively lowered by using materials with a high albedo, a high heat capacity or a high evaporation at the pavement surface. The glare situation, however, is intensified by raising of the albedo, moreover if reflected light is absorbed into surrounding physical masses, it is changed into heat. It accordingly became evident that raising the heat capacity and the evaporative capacity may be the moot acceptable measures to improve the thermal characteristics of the pavement. 4) The sensitivity of the surface temperature to major meteorological variables was as follows. When the daily average temperature changed to $0^{\circ}C\;from\;15^{\circ}C$, holding all other variables constant, the peak surface temperature of the pavement decreased by 56.1 %. When the global solar radiation changed to $200\;Wm^{-2}\;from\;600\;Wm^{-2}$, the temperature of the pavement decreased by 23.4%. When the wind velocity changed to $8\;ms^{-1}\;from\;4\;ms^{-1}$, the temperature decreased by 1.4%. When the cloudiness level changed to 1.0 from 0.5, the peak surface temperature decreased by 0.7%. The peak pavement surface temperature under the arbitrary basic conditions was $24.46^{\circ}C$ (12 a.m.)