• Title/Summary/Keyword: 콘크리트 폐기물

Search Result 416, Processing Time 0.027 seconds

An Experimental Study on the Compressive Strength Properties of Sulfur-solidified Materials using Bottom Ash Fine Aggregate (바닥재 잔골재를 활용한 유황고형화 성형물의 압축강도 특성에 대한 실험적 연구)

  • Hong, Bumui;Choi, Changsik;Yun, Jungho;Eom, Minseop;Jeon, Sinsung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.259-265
    • /
    • 2012
  • Differently from fly ash, the bottom ash produced from thermal power generation has been treated as an industrial waste matter, and almost reclaimed or was applied with the additive of the part concrete. Bottom ash has various problems to use with the aggregate. Bottom ash is lighter than typically the sand or the gravel and it's physical properties (compressive strength etc.) is somewhat low because of high absorptance. In order to manufacture the ash concrete, we used a bottom ash as a main material and a pure sulfur as a binder. In this study, fundamental research methods that vary the grain-size of bottom ash and the ratio of sulfur vs ash were investigated to improve the quality of ash concrete such as compressive strength. Bottom ash in this research which occurs from domestic 4 place power plants, was checked physical and chemical properties. The compressive strength seems the result which simultaneously undergoes an influence in content of the sulfur and Bottom ash grain-size. We got the result of the maximum 92 MPa. The compressive strength was high result for grain size below 1.2 mm and high sulfur content.

A Study on the Ecological Characteristics and Changes of the Shigeru Ban Exhibition Space (시게루 반 전시공간의 생태적 특성과 변화 연구)

  • Tian, Hui;Yoon, Ji-Young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.147-161
    • /
    • 2022
  • This study examined changes in the ecological characteristics and design characteristics of Ban's exhibition space in three representative temporary exhibition halls and three permanent exhibition halls designed by Ban Shigeru since 2000. Through the investigation of the concepts and characteristics of ecological architecture, the design characteristics of exhibition space, the analysis framework of the design characteristics of exhibition space and the design elements of ecological architecture is obtained. The analysis results show that there are big changes between the temporary exhibition space and the permanent exhibition space in terms of building scale, space composition, function, materials and technology. On the one hand, the temporary exhibition space used recyclable materials, such as paper tubes, containers to be assembled on site into a single-layer space focused on display. The assembly method was simple and the construction period was short. After the exhibition, the exhibition space were dismantled. The materials were either transported to the next display site or recycled and reused. On the other hand, the permanent exhibition space used reinforced concrete as the main structure, and used a large amount of wood and glass materials to construct a multi-layered composite cultural space that separated the exhibition space and the leisure space. In terms of ecological characteristics, the building materials of the temporary exhibition space were recycled and no industrial wastes were generated after the demolition. The permanent exhibition hall uses eco-friendly wood for the roof and walls, so it is easy to replace and repair. Both types of exhibition halls are changing ecological architecture in a more sustainable direction by saving resources and energy through natural light and ventilation.

A study on the Development of a Drying and Fermentation Process of Domestic Animal Manure;II. Demonstration of a Pig Manure Treatment System on a Farm (가축분(家畜糞) 건조(乾燥) , 발효(醱酵) 복합시설(複合施設) 개발(開發) 연구(硏究);II. 돈분(豚糞) 건조(乾燥), 발효(醱酵), 복합시설(複合施設) 실증시험(實證試驗))

  • Yun, Sun-Gang;Jung, Kwang-Yong;Park, Woo-Kun;Kwon, Sun-Ik;Park, Hong-Jae;Yoo, Sun-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.223-230
    • /
    • 1994
  • A practical study on a drying and fermentation system equipped with a stirring machine operated mechanically, of pig manure was conducted to prove the efficiency of and practicability to an ordinary pig farm. The type of the drying bed was a round-shaped (r=3m) concrete structure and the stirring machine was adopted to stir and transfer dried pig manure to the fermentation tank. The dried pig manure was put into a fermentation tank ($V=18m^3$), which was aerated from pipe lines installed at the bottom. While water content of pig manure passing through a drying bed was remarkably reduced than before drying, the drying efficiency of this system decreased in winter. However, the temperature of pig manure piled up in the fermentation room in winter reached over $60^{\circ}C$ and excess water of pig manure was removed during the fermentation process. The reduction rate of water content of pig manure, to which dried pig manure was added as bulking material on the drying bed, was 52.1%, but when dried without bulking material it was only 19.7%. Although the content of $P_2O_5$ of dried pig manure was slightly higher than that of fresh pig manure, progressive changes in chemical composition between fresh and dried pig manure made no great difference. Among the contents of minerals of fresh and dried pig manure, CaO was the highest and the rest were in the decreasing order of $K_2O$, MgO, and $Na_2O$. Population density of E. coli and Streptococci of dried pig manure was reduced by 142 and 236 times that of fresh pig manure, respectively. The installation cost of this drying and fermentation system was 4,185,630 won (approximately 5,232 US $) and operating cost per year was 190,000 won (237.5US $) on the basis of self-labor condition.

  • PDF

Studies on the Strength of Briquette Ash Hardened by Cement (연탄재를 시멘트로서 경화(硬化)시켰을 때의 강도(强度)에 관(關)한 연구(硏究))

  • Kim, Seong-Wan
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.1
    • /
    • pp.45-55
    • /
    • 1979
  • This study made to find the variation of strengths of briquette ash which were hardened into cement. The briquette ash were mixed with the cement, ((cement (90%)+slaked lime (10%)) and ((cement (80%)+fly ash (20%)) in the ratio of 1:2, 1:3, 1:4, 1:5, 1:7 and 1:9, respectively, and these were compared with the one made of cement plus standard sand in the strengths of compression, tension and bending at the ages of 7 days and 28 days. The results from the study conducted preliminary without studying the economical aspects or duration of the products are summarized as follows: 1. The compressive strengths of mortar made of 1 to 2 ratios of cement to briquette ash, (cement+slaked lime) to briquette ash and (cement+fly ash) to briquette ash were 84%, 90% and 75% at the age of 7 days and 84.9%, 73.5% and 69.8%, respectively of those of Korean Standard values. 2. The compressive strength s of mortar made of 1 to 2 ratios of cement to briquette ash, (cement+slaked lime) to briquette ash and (cement+fly ash) to briquette ash were 69.3%, 75.1% and 41.3% at the age of 7 days and 56.4%, 49%, and 46.5% at the age of 28 days, respectively of the mortar made of standard sand. 3. The tension strengths of mortar made of 1 to 2 ratios of cement to briquette ash, (cement+slaked lime) to briquette ash, and (cement+fly ash) to briquette ash were 64.4%, 47.1% and 35.4% at the age of 7days and 69.6%, 64.8%, and 57.3%, respectively of that of the mort ar produced with standard sand. 4. The bending strengths of mortar made of 1 to 2 ratios of cement to briquette ash, (cement+slaked lime) to briquette ash, and (cement+fly ash) to briquette ash were 46.3%, 65.9% and 39.1% at the age of 7 days and 89.9%, 96.7%, and 85.1%, respectively of that of mortar produced with standard sand. 5. The bending strength of the mortar was lower than that of cement mortar, when the briquette ash were harqened into cement. However, the mortar produced by such method seemed to be used as the secondary products of cement or concrete. The additional usefullness of the hardened biquette ash can be found in contributing toward the solving the various pollution problems, the saving the labor costs needed to clean-up waste materials, and the saving the construction materials.

  • PDF

Measurement of Verticality and Joint Gaps of a Near-surface Disposal Facility Vault Through a Mock-up Test for Fill-up Stages (표층처분시설 처분고의 목업테스트를 통한 채움단계별 수직도 및 이음부 벌어짐 측정)

  • Choi, Dong-Ho;Ann, Ki-Yong;Choi, In-Yong;Lee, Hyuk-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.537-544
    • /
    • 2021
  • In order to describe the fill-up stages of a near-surface disposal facility vault, a mock-up test is performed, and its behavior during the fil l -up stages is investigated. On an in-site concrete foundation with a l ength of 6600mm, a width of 6600mm and a thickness of 400mm, a reinforced concrete disposal vaul t is manufactured with 4 precast (PC) corner wal l s and 8 PC side wal l s. 36 wasted drums are pl aced on the 1st fl oor in 6 by 6, and then the empty space is fil l ed with grout fil l er. These processes are repeated up to the 5th floor, and the verticality and the joint gaps are measured for each fill-up stage. The verticality is measured using a level at 6 positions on each side wall (3 positions on the left and right sides, respectivel y), i.e. a total of 24 positions on the 4 side wal l s. The joint gaps are measured at 9 positions on each side wal l (3 positions on the left, center and right sides, respectively), I.e. a total 36 positions on the 4 side walls. To measure the joint gaps, crack tips are installed on the left and right sides of every joint gap, and vernier calipers are used. The measured verticality obtained through the mock-up test was found to be ±0.1° based on the initial stage (ST0), and the result of the joint gap was up to 0.38mm. This appears to have a negligible effect on the structure.

Activation Evaluation of Radiation Shield Wall (Concrete) in Cyclotron room using the Portable Nclide Analyzer Running Title: Activation Evaluation of Concrete in Cyclotron room (휴대용 핵종분석기를 활용한 사이클로트론실 내 차폐벽 방사화 평가)

  • Kim, Seongcheol;Gwon, Da Yeong;Jeon, Yeoryeong;Han, Jiyoung;Kim, Yongmin
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.2
    • /
    • pp.41-47
    • /
    • 2021
  • Purpose There are many cyclotrons compared to the land area of the Republic of Korea. Because GMP certification is required and the nuclear medicine test does not apply for insurance, the number of examinations for nuclear medicine is decreasing. Therefore, there is a high probability of early decommissioning of the cyclotron. However, we do not unusually perform the radioactivation evaluation on concrete that can be classified as radioactive waste during the decommissioning of the cyclotron. In this study, we aim to confirm the radioactivation in the concrete surface using Handheld Radionuclide Identification Devices (RIDs). Materials and Methods Because there is no cyclotron being decommissioning in the Republic of Korea, it was impossible to perform the coring of concrete for radioactivation analysis. In this study, we used the KIRAMS-13 and analyzed the concrete surface in the target direction in the cyclotron room. After setting the target direction as the center, radionuclides were measured for about five months at thirty points with vertical and horizontal intervals of 30 cm. We used the RIIDEye(Detector: NaI(Tl) detector, manufacturer: Thermo) in this study and set the measurement time per point to one day (24 hours). Results Co-60 and Cs-137 were detected in some measurement points, and we confirmed the radioactivity of Co-60 detected at the most points. As a result, we found that the radioactivity of Co-60 was high in the diagonal direction (from the lower-left direction to the upper right direction) based on the center of the target. However, we think it is impossible to apply the corresponding results to all cyclotrons because we performed the study using only one cyclotron. Conclusion In thirty measurement points, we could confirm the radioactive nuclides and the relative radioactivity using the results of portable nuclides analyzer. Therefore, we expect that we can use the portable nuclides analyzer to select the coring position of concrete during the decommissioning of the cyclotron. Also, if we secure the radioactivation data for several years, we expect to make a more accurate estimate of radioactive waste during the preparation period of decommissioning of the cyclotron.