• Title/Summary/Keyword: 콘크리트 전단키

Search Result 48, Processing Time 0.021 seconds

An Experimental Study on the Behavior of Precast Concrete Shear Keys (프리캐스트 콘크리트 전단키의 역학적 거동에 관한 실험연구)

  • 오병환;이준서;이형준;임동환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.86-89
    • /
    • 1992
  • In the precast segmental method of construction, segments of a structure are precast, assembled, and tied together by post-tensioning to form the structure. Shear strength and behavior of points in precast concrete structures are important problems in the design of these structures. An experimental program was set up study the shear behavior of precast concrete shear keys. experimental models of keyed joints include a single key, representing one of a series include the shear key shape, d/h ratio(1/4, 1/5, 1/7), and inclined angle (45。 60。 75。). Two different types of joints, i.e., epoxied joint and dry joints were studied. From the present tests, it is found that epoxied joints have higher shear strength than those of dry joints, and that high d/h ratio keys have higher shear strength than those of low d/h ratio keys. The keys with 60。-inclined angle shows the highest shear strength among various angles.

  • PDF

Shear Behavior Characteristics of Interface between Two Concrete-blocks (콘크리트 블록 접촉면의 전단특성)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.69-75
    • /
    • 2008
  • Shear tests were carried out on interface between two concrete eco-blocks which comprise segmental retaining wall. Three interface conditions were considered : 1) direct contact of two blocks, 2) placing rubber pad between two blocks, 3) placing rubber pad and shear key between two blocks. According to shear tests, shear load-shear displacement relationship which was obtained from direct contact of two blocks was similar to elastic-perfectly plastic behavior. Ductile behavior of shear load-shear displacement relationship was observed for the interface condition of placing rubber pad. Apparent minimum shear capacities and apparent friction angles for the interface conditions of direct contact of two blocks, placing rubber pad between two blocks, placing rubber pad and shear key were 1.7 kN/m, $27.6^{\circ}$ and 4.2 kN/m, $26.2^{\circ}$ and 20.9 kN/m, $26.0^{\circ}$ respectively.

A study for the performance evaluation of concrete block assembly wall without using mortar (무모르타르로 건식조립된 콘크리트블록 벽체의 성능평가 연구)

  • Lee, Joong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.203-210
    • /
    • 2019
  • A recent earthquake on the Korean Peninsula caused much damage to masonry buildings, and research on performance evaluation has been underway. A masonry building is generally constructed using wet construction and is affected by temperature, which reduces the efficiency of the construction. In this study, we propose a dry construction technique for assembling concrete blocks without using mortar and evaluated its performance through experimental and analytical research. To evaluate the performance, experiments were carried out for the prismatic compressive strength, direct terminal strength, and diagonal tensile strength of the dry construction wall. The adequacy of the cross section shape was also reviewed through FEM analysis. The results show that the compressive strength and diagonal tensile strength could exert a certain intensity or higher. Furthermore, the H-type module of a key block acted as a shear key for the entire concrete block, which resulted in excellent shear strength performance. In addition, the shape and thickness of the main block have a major effect on the strength performance of each block. Therefore, an optimal shape and the proposed dry construction method could be applied to replace the wet method by studying the construction or seismic performance of the proposed method.

Shear Resistance Performance of Vertical Construction Joints in Slurry Walls Using Concrete Shear Keys (콘크리트 전단키에 의한 지하연속벽 수직시공이음부의 전단저항 성능)

  • Lee, Jeong-Young;Kim, Seung-Weon;Kim, Doo-Kie
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.399-400
    • /
    • 2023
  • Current building structural standards require the shear strength and rigidity in the design of vertical construction joints in a slurry wall. This paper proposes a shear key resistance method for shear connection of vertical construction joints, and compares its structural performance with the currently prevalent method of shear friction rebar. The study found the structural performance of the shear key resistance method was significantly better than that of the shear friction rebar method.

  • PDF

Behavior of Precast Concrete Shear Walls with C-Type Connections (C형 접합부를 이용한 프리캐스트 콘크리트 전단벽의 거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.461-472
    • /
    • 2010
  • This paper investigates the behavior of precast concrete (PC) shear walls with a new vertical connections for a fast remodeling construction. The C-type vertical connections for the PC wall systems are proposed for transfer of bending moment between top and bottom walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing action. The proposed vertical connections allows easy fabrication thanks to slots at the edges of wall in opposite directions. The plane PC wall systems subject to lateral load are compared with ordinary wall systems by investigating the effects of connection on the stiffness, strength, ductility, and failure modes of whole systems. The load-displacement relationship and influence of premature failure of connections are examined. The experimental test showed that the longitudinal reinforcing steel bars placed at the edges of walls yielded first and the ultimate deformation were terminated due to premature failure of connections. The diagonal reinforcements for efficient shear transfer in the walls were not effective. The strength and deformation obtained through the section analysis were generally in agreement with the experimental data, and indicated that. Gap opening contributed to the deformation behavior more than any other factors.

The Push-out Resistance Evaluation of Steel Pipe Cap with Perfobond Rib Shear Connector (퍼포본드로 보강된 강관말뚝머리의 압발저항성능 평가)

  • Koo, Hyun-Bon;Kim, Young-Ho;Kang, Jae-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.77-80
    • /
    • 2008
  • The conventional pile cap reinforcement systems regulated in the design specifications have some restrictions in design and construction such as disposition of reinforcing bars, insurance of anchoring length of reinforcements and requirement of shear key. This study suggests a new type of steel pipe pile cap system with perforated rib shear connector as an alternative to the conventional pile cap system for the improvement in structural performance and simplification of construction. And, experimental results of push-out are scribed for the evaluation of structural performance of the new pile cap system and it was compared to the structural behavior of conventional pile cap system.

  • PDF

Experimental Study on the Load Transfer Behavior of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 하중전달 거동에 관한 실험적 연구)

  • Shin, Hyun-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.10-21
    • /
    • 2014
  • The joint of prefabricated steel grid composite deck is composed of concrete shear key and high-tension bolts. The flexural and shear strength of the joint were experimentally evaluated only by the bending and push-out test of the joint element. In this study the lateral load transfer behavior of the joint in deck structure system is experimentally evaluated. Several decks connected by the joint are prefabricated and loaded centrically and eccentrically. In the case of centrically loaded specimens, the analysis results show that for the same loading step the rotation angle of the joint with 4 high-tension bolts is larger than the case of the joint with 9 high-tension bolts. Consequently, flexural stiffness of deck and lateral load transfer decrease in the case of specimen with 4 high-tension bolts. But, in the case of eccentrically loaded specimens, it is found that there are no significant differences in the load transfer behavior. The further analysis results about the structural behavior of the joint show that lateral load transfer can be restricted by the load bearing capacity of the joint as well as punching shear strength of the slab. Furthermore, considering that high-tension bolts in the joint didn't reach to the yielding condition until the punching shear failure, increase in the number of high-tension bolts from 4 to 9 has a greater effect on the flexural stiffness of the joint and deck system than the strength of them.

Static Load Tests on Flexural Strength and Crack Serviceability of a Longitudinal Joint for the Slab-Type Precast Modular Bridges (슬래브 형식 프리캐스트 모듈러교량 종방향 연결부의 휨강도 및 균열 사용성에 관한 정적재하실험)

  • Lee, Jung-Mi;Lee, Sang-Yoon;Song, Jae-Joon;Park, Kyung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.137-145
    • /
    • 2015
  • The slab-type precast modular bridge consists of the precast slab bridge modules which are connected in the transverse direction. The longitudinal joints between the precast slab bridge modules are filled with cast-in-place mortar. The construction of the slab-type precast modular bridge is completed by applying the prestressing force on the longitudinal joints. In this study, 4-points bending tests and 3-points bending tests were conducted to examine the effects of the prestressing force and the shape of joint on the flexural strength and crack serviceability of longitudinal joint. The results of 4-points bending tests showed that the flexural strength is affected by the prestressing force but not by the shape of join. From the results of 3-points bending tests by which the bending moment and the shear force are simultaneously applied on the joints of the specimens, it is observed that the shape of joint affects on the flexural strength and the crack behavior. The results of two types of bending tests confirmed that the prestressing force according to the design code is appropriate and the joint with two shear keys gives the better performances against the crack of joint.

Shear Key Design of Concrete Track on Bridge (교량구간 콘크리트궤도의 전단키 설계)

  • Back, Hyo-Sun;Lee, Ho-Ryong;Bae, Sang-Hwan;Cho, Hyun-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3251-3255
    • /
    • 2011
  • Being the concrete track laid on bridge, due to track-bridge temperature difference, traction and brake force, and nosing force, the horizontal force can be applied to the track slab. Therefore, shear key structures to resist this horizontal force should be installed. The shear key structures installed in the Kyeong-Bu high-speed line are consisted of four shear keys at every slab with the length of 6 to 8m. However, in the point of view of construction, it is more advantageous to curtail the numbers of shear keys, and thus, the numbers and spacing of the shear keys should be carefully determined. In this study, hence, the effects of slab length, the numbers and spacing of the shear keys on design of shear key and track slab are examined.

  • PDF

Analytic Hysteretic Model of Reinforced Concrete Members (철근콘크리트 부재의 해석적 이력모델)

  • 정영수
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.133-142
    • /
    • 1991
  • A mathematical hysteretic model has been developed to analytically reproduce the experimental hysteretic behavior of reinforced concrete members. This mode[2, 3] can simulate the nonlinear response of reinforced concrete members with sufficient accuacy, which are characterized by following important hysteretic behaviors: stiffness degradation, strength deterioration and shear effect. In order to illustrate the capabilities of the proposed mathematical model, numerical examples are presented with the reproduction of experimental hysteretic behavior of RC members and frames.

  • PDF