• Title/Summary/Keyword: 콘크리트 양생

Search Result 741, Processing Time 0.022 seconds

Relation Between Explosive Spalling and Pore Stucture of High-Strength Concrete (고강도콘크리트의 폭렬성상과 공극구조와의 관계)

  • Kim, Dong-Joon;Lee, Jae-Young;Harada, Kazunori;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.89-93
    • /
    • 2011
  • 본 연구는 고강도콘크리트의 폭렬성상과 공극구조와의 관계를 실험적으로 규명하는 것을 목적으로 하였다. 실험변수는 양생방법, 압축강도, 공극구조로 설정하였으며, ISO834 화재온도이력곡선을 15분 적용하여 콘크리트의 초기 폭렬특성을 실험적으로 검토하였다. 그 결과 50 MPa급 이상의 고강도 콘크리트 시험체의 경우, 가열 이후에도 $0.05{\mu}m$ 이하의 공극이 많이 존재하고 있는 것을 알 수 있었으며, 가열을 받은 고강도 콘크리트는 고강도화될수록 공극이 세공화 되어 탈수 현상이 지연되는 것을 도출 할 수 있었다.

  • PDF

콘크리트 장기거동 특성예측

  • 송영철;이대수;조명석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.973-979
    • /
    • 1995
  • 콘크리트의 물리적 특성치인 크리이프, 건조수축, 탄성계수 및 포아슨비등은 배차조건, 부재의 크기, 양생 및 재하조건 등 많은 요소들의 영향을 받고있다. 특히 크리이프와 건조수축은 복잡한 시간의존성 특성(time-dependent properties)으로 인해 아직까지도 이 분야에 대한 연구가 계속되고 있다. 따라서 본 연구에서는 불확실성이 많은 콘크리트의 장기거동에 따른 물리적 특성규명을 위하여 재하재령을 변화(7, 28, 90, 180, 365일) 시키면서 크리이프, 탄성계수, 포아슨비등을 측정, 분석함으로써 콘크리트 장기거동 예측식을 제시하였으며, 이는 프리스트레스트 콘크리트 구조물에서의 시간에 따른 응력손실을 고려한 유효 프리스트레스 응력 산정 및 구조물의 건전성 평가에 실질적 도움을 줄 수 있을 것으로 판단된다.

  • PDF

Development of Geopolymer Mortar Based on Fly Ash (플라이애시 기반 지오폴리머 모르타르 개발)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.119-126
    • /
    • 2012
  • Portland cement production-1.5billion tonnes yearly worldwide-contributes substantially to global atmospheric pollution(7% of total of $CO_2$ emissions). Attempts to increase the utilization of fly ash, by-products from thermal power plant to partially replace the cement in concrete are gathering momentum. But most of fly ash is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the sources of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effect reduction of $CO_2$ gas. In this study, we investigated the influence of the compressive strength of mortar on alkaline activator and curing condition in oder to develop cementless fly ash based alkali-activated concrete. In view of the results, we found out that it was possible for us to make alkali-activated mortar with 70MPa at the age of 28days by using alkaline activator manufactured as 1:1 the mass ratio of 9M NaOH and sodium silicate and applying the atmospheric curing after high temperature at $60^{\circ}C$ for 48hours.

  • PDF

Application for Measurement of Curing Temperature of Concrete in a Construction Site using a Wireless Sensor Network (무선센서네트워크에 의한 콘크리트 양생온도 계측에 관한 현장 적용성 연구)

  • Lee, Sung-Bok;Bae, Kee-Sun;Lee, Do-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.283-291
    • /
    • 2011
  • As the construction industry has recently been transformed by the emergence of ubiquitous and intelligent technology, there have been major changes in the management methods employed. Specifically, next-generation construction management systems have been developed that collect and analyze many pieces of information in real time by using various wireless sensors and networks. The purpose of this study is to understand the current status of Ubiquitous Sensor Networks (USN) in the construction sector, and to gain fundamental data for a system of measuring concrete curing temperature in a construction site that employs a USN. By investigating the application status of USN, it was confirmed that USN has mainly been applied to the maintenance of facilities, safety management, and quality control. In addition, a field experiment in which the curing temperature of concrete was measured using a USN was carried out to evaluate two systems with wireless sensor networks, and the applicability of these systems on site was confirmed. However, it is estimated that the embedded wireless sensor type is affected by metal equipment on site, internal battery of sensor and concrete depth, and studies to provide more stable system by USN are thus required.

Experimental Study for Utilizing of Recycling Fine Aggregate as Precast Concrete Aggregate (재생(再生)잔골재(骨材)를 프리캐스트 콘크리트용(用) 골재(骨材)로 활용(活用)하기 위한 실험적(實驗的) 연구(硏究))

  • Moon, Dae-Joong;Moon, Han-Young;Kim, Yang-Bae;Lim, Nam-Woong
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.24-31
    • /
    • 2006
  • The duality of recycled fine aggregate (RS) which was produced at the waste concrete crushing was investigated. The compressive strength, flexural strength and absorption of mortar utilized with RS were examined. It was evaluated on the application of RS as precast concrete aggregate. The density and absorption of RS were $2.31g/cm^3$ and 8.07% respectively, the quality of RS was satisfied with the criterion of KS F 2573 type 2. The maximum 28days compressive strength of mortar mixed with blended cement MRS1, MRS2 and MRS3 were developed with 15.8, 27.4 and 48.7MPa respectively, in condition to curing temperature $40^{\circ}C$ and water-cement ratio 37.5%. When blended cement MRS1 and MRS2 were used, the maximum flexural strength of mortar was developed at curing temperature $40^{\circ}C$ and water-cement ratio 35.0%. When blended cement MRS3 was used, the maximum flexural strength of mortar was developed at curing temperature $40^{\circ}C$ and water-cement ratio 37.5%. The absorption of mortar mixed with blended cement MRS1, MRS2 and MRS3 were indicated the range of $8.3{\sim}7.3%,\;6.5{\sim}8.5%$ and $3.5{\sim}6%$ respectively. Therefore, when the ratio of blended cement and RS is appropriately centre]led, it would be expected that MRS1, MRS2 and MRS3 will be able to apply the variable low strength, medium strength and high strength precaste concrete.

Prediction of Setting Time of Concrete Using Fly Ash and Super Retarding Agent (초지연제 및 플라이애쉬를 사용한 콘크리트의 응결시간 예측)

  • Han, Min-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.759-767
    • /
    • 2006
  • This paper presents a method to estimate the setting time of concrete using super retarding agent(SRA) and fly ash(FA) under various curing temperature conditions by applying maturity based on equivalent age. To estimate setting time, the equivalent age using apparent activation energy($E_a$) was applied. Increasing SRA content and decreasing curing temperature leads to retard initial and final set markedly. $E_a$ at the initial set and final set obtained by Arrhenius function showed differences in response to mixture type. It is estimated to be from $24{\sim}35KJ/mol$ in all mixtures, which is smaller than that of conventional mixture ranging from $30{\sim}50KJ/mol$. Based on the application of $E_a$ to Freisleben-Hansen and Pederson's equivalent age function, equivalent age is nearly constant, regardless of curing temperature and SRA contents. This implies that the concept of maturity is applicable in estimating the setting time of concrete containing SRA. A high correlation between estimated setting time and measured setting time is observed. Multi-regression model to determine appropriate dosage of SRA reflecting FA contents and equivalent age was provided. Thus, the setting time estimation method studied herein can be applicable to the concrete containing SRA and FA in construction fields.

Development of Lightweight Foamed Concrete Using Polymer Foam Agent (고분자 기포제를 이용한 경량 기포 콘크리트의 개발(I))

  • 변근주;송하원;박상순
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.165-172
    • /
    • 1997
  • Lightweight foamed concrete is a concrete which is lighter than conventional concree by mixing ptetoamed foam in cement slurry. The objectives of this study are to develop optimal prefoarneti lightweight foamed concrete with high lightness. high flowability and enough strength fol special use of structural application by using the polymer foam agent. By mixing the admixtures such as silica-fume and fly-ash and the industrial by-product such as styrofoam for the purpose of practical use of industrial waste, lightweight foamed concrete shich has better lightness. flowability and strength than the conventional prefoamed lightweight foamed concrete is developed. This paper presents extensive data on characteristics of compressive strength and flowability of the concrete manufactured with the different factors in mix design and also presents optimum mix proportion.

Mathematical Modeling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.118-125
    • /
    • 2002
  • Hydration is the main reason for the growth of the material properties. An exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development of all material properties and the formation of microstructure should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of W/C ratio on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The tatter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration. In this study, the effects of chemical composition of cement, W/C ratio, temperature, and moisture conditions on the degree of hydration are considered. Parameters that can be used to indicate or approximate the real degree of hydration are liberated heat of hydration, amount of chemically bound water, and chemical shrinkage, etc. Thus, the degree of heat liberation and adiabatic temperature rise could be determined by prediction of degree of hydration.