• Title/Summary/Keyword: 콘크리트 내구성

Search Result 1,173, Processing Time 0.031 seconds

Affecting Analysis of Air Content on the Freeze-Thaw Durability of Concrete (콘크리트의 동결융해 내구성에 공기량이 미치는 영향 분석)

  • Lee, Beung-Duk;Kim, Hyun-Joong;Kang, Hye-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.565-568
    • /
    • 2008
  • Domestic area of most be happened chloride deicer damage. Because daily mean temperature is below 0$^{\circ}C$ from the area of domestic most. Concrete durability influence Air Content. Presently, We used to AE(air-entraining agent) for increase freeze-thaw durability. So, on concrete Air Spacing ratio used $200{\mu}m{\sim}230{\mu}m$ in Canada and under $250{\mu}m$ in Japan institution. Use of Air content has been and will continue to be a major part of concrete durability and scaling. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. The prepared optimum mix concrete in this study show that freeze-thaw and scaling resistance of Non-AE(air content 1.5%) and AE (air content 4.5%, 7.2%). Solution concentrations of deicing agent were good result, and the pore system and change of hydration products is not difference comparing before freeze-thaw test.

  • PDF

Probability-Based Durability Analysis of Concrete Structures under Chloride Attack Environments (염해를 받는 콘크리트 구조물의 확률론적 내구성 해석)

  • Kim, Jee-Sang;Jung, Sang-Hwa;Kim, Joo-Hyung;Lee, Kwang-Myong;Bae, Su-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.239-248
    • /
    • 2006
  • Recently, a variety of researches has been carried out to obtain a more controlled durability and long-term performance of concrete structures under chloride attack environments. In particular, new procedures for probability-based durability analysis/design have been noticed to be very valuable for the enhancement of service life of concrete structures. Although there is still a lack of relevant data, this approach has been successfully applied to some new concrete structures. In this paper, the diffusion equation based on Fick's second law has been solved with a time dependent diffusion coefficient and the probabilistic analysis of the durability performance has been carried out by using a Monte Carlo Simulation. From the results, the influence of each parameter on the durability of concrete structures was investigated and the new procedure for durability analysis was demonstrated in terms of chloride penetration data from various concrete structures. The new procedure might be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures under chloride attack environments.

An Experimental Study on the Freeze-Thaw Resistance of High-Strength Light Weight Aggregate Concrete (고강도 경량골재콘크리트의 동결융해 저항성에 대한 실험적 연구)

  • 한상묵;최세규;김생빈
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.125-132
    • /
    • 1998
  • 경량골재 콘크리트의 내구성과 경제성에 대한 인식 부족으로 조경재료나 인공토양 둥 구조부재 이외의 분야에 사용되고 있는 국내 실정에 비해서, 구미 여러나라에서는 고강도 경량골재를 장지간 교량과 고충건물에 사용하고 있다. 경량골재 콘크리트는 구조물의 재료비 단순비교에 있어서도 경제성이 있을 뿐만 아니라, 자중감소로 인한 구조적, 기하학적 장점도 있으며, 또한 고강도 경량골재의 개발로 경량골재가 가지고 있는 여러 문제점을 해소하여 사용성과 내구성에 있어서 보통골재 콘크리트와 큰 차이가 없는 상황이다. 그러나국내에서 생산된 경량골재는 닫힌 공극보다 열린 공극을 많이 내포하고 있어 수분흡수가 많고, 특히, 동결융해에 대한 내구성에 취약한 문제점을 가지고 있다. 본 논문에서는 내동해성 향상을 위해 10종류의 고강도 경량골재 콘크리트 공시체를 제작하여 실리카 흄, 물.시멘트비, AE제, 강섬유 등을 실험 변수로 하여동결융해 실험을 수행하였다. 연구결과 실리카흄, 물.시멘트 비는 어느 정도 내동해성을 향상시키지만 근본적인 해결방안이 되지 못하며, AE제를 첨가한 공시체와 강섬유를 사용한 공시체는 동결융해 내구성 지수가 90%이상으로 측정되어 내동해성을 개선시킬 수 있는 요소로 나타났다.

Evaluation on Durability of High Performance Concrete with Expansive Additive and Shrinkage Reducing Admixture (팽창재와 수축저감제를 사용한 고성능 콘크리트의 내구성 평가)

  • Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.205-211
    • /
    • 2006
  • The objective of this study was to evaluate the durability of low shrinkage high performance concrete(LSHPC), which was combined with expansive additives and shrinkage reducing admixtures. We tested for not only LSHPC but also high performance concrete(HPC) and normal concrete(NC) to be compared with the durability of LSHPC. HPC was made in the same water-binder ratio of LSHPC without expansive additives and shrinkage reducing admixture. As a result, it was found that LSHPC had higher compressive and tensile strength than that of HPC. LSHPC showed more excellent performance than HPC and NC in the case of resistance to chloride ion penetration and resistance to carbonation and also showed nearly 100 durability factor in the freeze-thawing test with 500 cycles. From the examination about the watertightness and the pore distribution, it was found that the durability of LSHPC was improved because its hardened cement paste is organized closer. So we can conclude that when LSHPC is applied to structures in field, it is possible to reduce the shrinkage and crack in concrete and improve the durability.

Field Exposure Test of the Concrete Treated by Protective Surface Coatings in Marine Environment (표면도장재를 적용한 콘크리트의 해양 노출시험)

  • 정해문;유환구;안태송
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.71-76
    • /
    • 2002
  • 콘크리트는 거의 반영구적인 재료라고 인식되어져 왔으나, 최근들어 해양환경, 적설한랭지대, 도심과 같은 열악한 환경속에서 예상보다 빨리 조기열화 되는 현상이 널리 알려지면서 콘크리트 구조물의 구조적 성능뿐만 아니라, 장기적인 내구성에 대한 관심이 높아져 가고 있다. 실제로 여러 선진국에서 염해와 같은 열화환경의 피해를 받은 콘크리트 구조물이 예상공용년수 이전에 철거되거나. 개보수 비용이 초기 건설비용보다 더 많이 드는 예가 적지 않게 보고되면서, 적절한 내구성 유지대책 및 구조물의 장수명화를 위해 많은 연구와 노력이 진행되고 있다.(중략)

Crack Analysis of CFRD Face Slab Concrete Using Blended Fiber (Blended 섬유를 사용한 CFRD 표면 차수벽 콘크리트의 균열발생 가능성 분석)

  • Woo, Sang-Kyun;Song, Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.653-656
    • /
    • 2008
  • The main purpose of this research was to enhance the durability in both the design and construction of dams. Especially, in case of rockfill dams, the durability of face slab concrete in a concrete-faced rockfill dam(CFRD) is achieved by optimizing the fly ash replacement for cement and application of blended fiber. The effect on durability and thermal property corresponding to the increasing replacement of fly ash and application of blended fiber was evaluated, and the optimum value of fly ash replacement and blended fiber application was recommended. The results show that 15% of fly ash replacement and 0.9kg/m3 of blended fiber application was found to be an optimum level and demonstrated excellent performance in durability and thermal property.

  • PDF

A Study on the Durability Improvement of Highway-Subsidiary Concrete Structure Exposed to Deicing Salt and Freeze-Thaw (동결융해 및 제설제에 노출된 고속도로 소구조물 콘크리트의 내구성 개선 연구)

  • Lee, Byung-Duk;Choi, Yoon-Suk;Kim, Young-Geun;Choi, Jae-Seok;Kim, Il-Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.128-135
    • /
    • 2016
  • In the current concrete structure of the highway is still the major problem most of concrete deterioration caused by the freeze-thaw and deicing salt, which is of issues that are not completely resolved. In particular, a single freezing event does not cause much harm, durability of concrete under multi-deterioration environment by repeated freeze-thaw and deicing salt is rapidly degraded and reduce its service life. In this study, the exposure environmental condition according the regional highway points were established. The damage condition and chloride content of the concrete at general and severe environmental exposure condition were also investigated. In addition, the experimental test of chloride ion permeability, scaling resistant and freeze-thaw resistance were carried out to improve the durability of the mechanical placing concrete of subsidiary structure. According to the results of this study, in observation of concrete surface condition, the concrete exposed by severe environmental condition showed broad ranges of damage with high chloride contents. Meanwhile, the water-binder(W/B) ratio and the less water content, and fly ash concrete than the specified existing mix proportion is significantly improved the durability. Also, the optimal mix proportion derived for test is satisfied the strength and air contents, water-binder ratio, and durability criteria of concrete specifications, as well as service life seems greatly improved.

Durability of Recycled Aggregate Concrete Incorporating Fly Ash (플라이애쉬를 혼합한 재생골재 콘크리트의 내구성)

  • 신재인;류택은;양승규;구봉근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • This study presented the experimental results on the durability properties of recycled aggregate concrete incorporating fly ash. The main experimental variables were the substitution ratio of recycled aggregate and fly ash, where the substitution ratios of recycled aggregate were 0, 30, and 50%, and those of fly ash were 0, 10, 20, and 30%. The tests for evaluating compressive strength, freezing-thawing resistance, and drying shrinkage were conducted for each specimen. As a result, the compressive strength and the durability of the recycled aggregate concrete were compared from those of ordinary concrete. The followings were conclusion; The compressive strengths of recycled aggregate concrete were less than those of ordinary concrete by 5-10%. However, the durability factor of recycled aggregate concrete remained above 90% at the substitution ratio of 30%. The quality of recycled aggregate concrete were improved by substitution at the range of less that 20% of fly ash and 30% of recycled aggregate.

A Study on Long-Term Mechanical Properties and Durability in Metakaolin Concrete Bridge Deck (메타카올린 콘크리트 교량바닥판의 장기 역학적 특성 및 내구성에 관한 연구)

  • Yang, Eun Ik;Kim, Myung Yu;Yang, Joo Kyoung;Park, Hae Geun;Choi, Yoon Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.125-133
    • /
    • 2011
  • The requirement for durability of concrete bridge deck is increasing as the deterioration for the concrete bridge deck exposed to severe environment has been increased. For this reason, the concern about high-durable concrete is being high. Recently, a metakaolin is highly spotlighted as new admixture because its strength and durability are equivalent to silica fume. On the other hands, there are few researches for the metakaolin concrete bridge deck in domestic. So many various long-term data on the mechanical property and durability is needed to apply metakaolin concrete at the concrete bridge deck construction field. This study is aim to evaluate the long-term mechanical properties and durability of metakaolin concrete bridge deck with curing age. Mechanical properties are estimated by the compressive and flexural strength, and the drying shrinkage, the chloride resistance, the scaling, and freezing and thawing characteristics are compared with curing age. According to the results, when the metakaolin concrete is used, the development of compressive and flexural strength proceed in both the early and old ages. It is also improved the resistance of chloride penetration, freezing and thawing in concrete. It was showed that replacement of metakaolin was efficient for the reduction of the drying shrinkage.

Drying Shrinkage and Durability of Concrete Using Fine River Sand (하천세사를 사용한 콘크리트의 건조수축 및 내구성)

  • Bae, Suho;Jeon, Juntai;Kwon, Soonoh
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.493-502
    • /
    • 2013
  • The purpose of this research is to estimate the drying shrinkage and durability of concrete using the fine river sand to utilize it actively as an alternative aggregate for concrete. For this purpose, the fine river sand samples were collected at the mid and down stream of main stream of Nakdong-River, and then the concrete specimens using the fine river sand were made according to strength level. After obtaining relation equation between compressive strength and cement-water ratio from the mix experiment result, the concrete specimens using different fine river sand were made for the specified concrete strength of 35MPa, and then their drying shrinkage and durability such as the resistance to freeze and thaw and carbonation were evaluated. It was observed from the test result that the durability of concrete using fine river sand was similar to that of concrete using reference sand, but the drying shrinkage of concrete using the fine river sand with small fineness was comparatively larger than that of concrete using reference sand.