• Title/Summary/Keyword: 콘크리트 공동

Search Result 227, Processing Time 0.023 seconds

Development of the Nondestructive Methods to Detect Voids under Concrete Slabs Using Wave Analysis (파동해석법을 이용하여 콘크리트 슬래브 하부의 공동을 찾는 비파괴 시험법의 개발)

  • Kim, Yongon;Kim, Y. Richard
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.108-120
    • /
    • 1998
  • 많은 주거용 및 상업용 건물에서 콘크리트 구조물이 사용되고 있는데 콘크리트 슬래브 아래의 기초부분에 공동이 생기는 경우가 종종 발견되었다. 이 현상은 진동하중, 반복되는 충격, 흙의 유실, 혹은 불량시공 등 여러가지 이유에 의해 발생할 수 있다. 이러한 현상은 구조물의 지지력을 저하시키고 결국 수명을 단축시키는 원인이 되므로 이러한 문제는 일찍 발견되고 조치가 취해질수록 구조물의 수명을 연장시킬 수 있을 것이다. 이러한 공동이 슬래브 아래에서 형성되고 커져가는 과정을 모니터할 수 있으면 현재 상태에서 지지력을 결정하고 또한 앞으로 남은 수명을 예측함으로써 적절한 유지보수계획을 세우는 데에 큰 도움이 될 것이다. 이 연구에서는 음파와 응력파, 특히 표면파가 슬래브 아래의 공동을 찾아내는데 이용되었고 두 가지 방법의 효과가 상호 비교되었다. 두개의 콘크리트 슬래브를 만들어 이용했는데 하나는 미리 공동이 만들어져 있었고 다른 하나에는 공동이 없었다. 공동이 없던 슬래브는 처음 손상안된 상태에서 실험을 한 후 나중에 하부에 공동을 만들어 다시 실험하였다. 실험결과와 실제 공동의 위치가 잘 일치되는 것으로 나타났다. 응력파를 이용하는 방법과 음파를 이용하는 방법사이의 장단점이 비교검토되었고 실험의 표준방법과 결과에 대한 일반적인 기준이 확립되어야 하는 필요성에 대해서도 설명되었다.

  • PDF

3 Dimensional Nondestructive Inspection of Cavities Inner Concrete by Ultrasonic Pulse Velocity Method (초음파속도법에 의한 콘크리트 내부공동의 3차원 비파괴검사)

  • Park, Seok-Kyun;Lee, Won-Hong;Heo, Jae-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.165-168
    • /
    • 2008
  • This study performed the 3-dimensional inspection analysis for cavitation by using the ultrasonic pulse velocity method to detect detailed various cavitations in a concrete test material. The internal-void are made of non-void test material and two types of which a regular square type and a rectangle type that produced through the 3-dimensional cavitation to put into a $500{\ast}500{\ast}500mm$ sized non-reinforced concrete test material. The tomography method for the ultrasonic pulse velocity method was used for the non-destructive test. As a result, this study has found that it is possible to visualize the cavitation as an image, and to analyze the internal-void in detail by the non-destructive method.

  • PDF

Detecting Reinforcing Bars under Multi Boundary Layers and Void Shapes in Concrete Using Simulation Analysis Model of Electromagnetic Wave Radar (전자파 레이더 모의해석에 의한 다층 경계 콘크리트 철근 및 내부 공동형상 검출 특성)

  • Park, Seok Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.809-816
    • /
    • 2006
  • More than effectively judging the existence of reinforcing bars under multi boundary layers and void shapes in concrete, this study aims to develop the analysis algorithm of radar response on multi boundary layers in reinforced concrete and radar capable of estimation of the shape of specific voids in plain concrete. To detect or estimate reinforcing bars and void shapes in these conditions, the simulation analysis model of transmission and reflection wave of electromagnetic radar is used. This radar simulation model is carried out with reinforced or non reinforced concrete of various boundary conditions and void shapes. And, the output signals (images) of radar simulation results are calculated and represented by convolution method. As the results, it is clarified that this simulation analysis technique can be used to analyze radar response on multi boundary layers in reinforced concrete and void shapes in concrete.

Estimation of Shape of Voids behind Concrete Tunnel Linings Using Radar of Three Dipole Antenna Type (3 다이폴 안테나 방식 레이더에 의한 콘크리트 터널 라이닝 배면 공동의 형상 추정)

  • Park Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.221-227
    • /
    • 2005
  • The presence of voids behind tunnel linings is very likely to result in settlement or structural collapse. One proposed method of detecting such voids by non-destructive method is radar. More than effectively judging the existence of voids behind tunnel linings, this study aims to develop the analysis algorithm of radar capable of estimation of the shape of specific voids. To acquire directional information and estimate the shape of three-dimensional voids, the radar of three-dipole antenna type is used. As a foundation to this ongoing research, an investigation of microwave polarization methods using three-dipole antenna carried out with various void orientations and void geometries. As a result, it is clarified that the response of four microwave polarization modes depends on void geometry and thus there is a possibility of identifying the geometry and orientation (the shape) of specific voids using radar of three-dipole antenna type.

Nondestructive Evaluation of Concrete Members Using Impact Echo Method (충격반향기법을 이용한 콘크리트 부재의 비파괴 검사)

  • 김동수;박형춘;이광명
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.109-119
    • /
    • 1997
  • 토건구조물의 사용연한 증가에 따른 기존 구조물의 손상도 및 적정시공여부을 추정하기 위해 비파괴검사의 중요성이 점점 증가하고 있다. 본 연구에서는 충격반향기법을 이용하여 콘크리트 부재에 대한 비파괴시험을 수행하였다. 충격반향기법은 응력파의 전파에 그 기본을 두고 있다. 시험부내는 보형태의 콘크리트부재로서 기지의위치에 공동이 만들어져 있으며, 충격반향기법을 사용하여 아주 작은 오차 범위내에서 공동의 위치를 측정하였다. 연구결과를 이용하여 현장에서 콘크리트 구조물의 적정시공여부 및 손상도 추정에 대한 적용가능성을 확인할 수 있었다.

A Model Test of IE and IR Method to Detect the Cavity Underneath the Concrete Structure (콘크리트 구조물 하부의 공동 탐지를 위한 충격반향(IE) 및 충격응답(IR) 기법의 모형 실험)

  • Noh, Myung-Gun;Oh, Seok-Hoon
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • The impact echo and impulse response methods were applied to the safety inspection of concrete structure, which has the rear cavity. The concrete structure model used in this study was divided into four sections, pure concrete, concrete+cavity, reinforced concrete with iron bar, and reinforced concrete+cavity, respectively. Previous study performed by authors have showed a possibility of success to use these method for detection of the rear cavity of concrete structure. Therefore, we tried to get more enhanced result with IE and IR methods through this study. Especially, IE and IR methods are relatively accurate to map the point of measurement, which makes it possible to interpret the depth of the concrete bed and effect by rear cavity with confidence. Followings were revealed from the results; the IE method shows some small peak zones probably indicating the rear cavity in the frequency lower than the resonance frequency and the changes of mobility and dynamic stiffness in the IR method indicate the weak zones. The proposed methods can be used to delineate the weak zones of the concrete structure.

Sensitivity Analysis of Design Parameters of Air Tightness in Underground Lined Rock Cavern (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동 기밀시스템 설계변수의 민감도 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Sun-Woo, Choon;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.287-296
    • /
    • 2011
  • We performed a numerical modeling study of thermodynamic and multiphase fluid flow processes associated with underground compressed air energy storage (CAES) in a lined rock cavern (LRC). We investigated air tightness performance by calculating air leakage rate of the underground storage cavern with concrete linings at a comparatively shallow depth of 100 m. Our air-mass balance analysis showed that the key parameter to assure the long-term air tightness of such a system was the permeability of both concrete linings and surrounding rock mass. It was noted that concrete linings with a permeability of less than $1.0{\times}10^{-18}\;m^2$ would result in an acceptable air leakage rate of less than 1% with the operational pressure range between 5 and 8 MPa. We also found that air leakage could be effectively prevented and the air tightness performance of underground lined rock cavern is enhanced if the concrete lining is kept at a higher moisture content.

Detection of Cavities Behind Concrete Walls Using a Microphone (마이크로폰을 이용한 콘크리트 벽체 배면의 공동 탐사)

  • Kang, Seonghun;Lee, Jong-Sub;Han, WooJin;Kim, Sang Yeob;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.19-28
    • /
    • 2022
  • Cavities behind concrete walls can adversely affect the stability of structures. Thus study aims to detect cavities behind concrete structures using a microphone in a laboratory model test. A small-scale concrete wall is constructed in a chamber, which is composed of a reinforced concrete plate and dry soil. A plastic bowl is then placed between the plate and soil to simulate a cavity behind the concrete structure. Leaky surface acoustic waves are generated by impacting the concrete plate using a hammer and are measured using a microphone. The measured signals are analyzed using natural frequencies, and cavity-free sections are evaluated. The test results show that the first natural frequency decreases at the cavity section due to the flexural vibration behavior of the plate. In addition, the amplitude corresponding to the first natural frequency decreases as the measurement location becomes farther from the cavity center and significantly decreases at the measurement locations near the rebars. This study demonstrates that a microphone may be useful to detect cavities behind concrete walls.

Integrated Application of GPR, IE and IR Methods to Detection of the Rear Cavity of Concrete (콘크리트 배면공동 탐지를 위한 GPR, IE 및 IR기법의 복합 적용)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Jang, Bong-Seok
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.338-346
    • /
    • 2009
  • Integrated analysis of GPR, impact echo (IE) and impulse response (IR) was performed to detect the rear cavity of concrete for a test-bed which was made with the same scale and component ratio to the real concrete structure. The test-bed was designed to be capable of observing various response reflecting the existence of iron reinforcing bar and cavity. GPR survey did not clearly resolve the existence of the cavity, although distinguishable responses were observed in the presence of the cavity. In contrast, IE and IR method showed distinct responses, indicating the existence of the cavity. Finally, integrated application of the three methods makes it possible to exactly identify the location of the cavity, although the iron reinforcing bar made a little variation of response.

A study on a Integrated analysis for survey of the cavity behind the Concrete (콘크리트 배면 공동탐사를 위한 복합적 해석 연구)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Suh, Baek-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.185-189
    • /
    • 2009
  • Integrated analysis of GPR, impact echo and impulse response for detection of the rear cavity of concrete was performed on the test-bed which was made in the same scale and component ratio to the real concrete structure. GPR survey may roughly delineate the location of the cavity, but applying the IE and IR technique to the test-bed, the location was clearly identified.

  • PDF