• Title/Summary/Keyword: 콘크리트상판

Search Result 77, Processing Time 0.022 seconds

A Simple Method of Obtaining Exact Values of the Natural Frequencies of Vibration for Some Composite Laminated Structures with Various Boundary Condition (다양한 경계조건을 갖는 복합적층판의 간편한 고유진동수 해석방법)

  • Won, Chi Moon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special orthotropic plates. Such systems with boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Numerical method for eigenvalue problems are also very much involved in seeking such a solution. A method of calculating the natural frequency corresponding to the first mode of vibration of beam and tower structures with irregular cross-sections was developed and reported by Kim in 1974. Recently, this method was extended to two dimensional problems including composite laminates, and has been applied to composite plates with shear deformation effects. In this paper, application of this method to the specially orthotropic laminated plates with various boundary condition is accomplished and the result of analysis is presented.

Size Effects in the Failure of Simple Supported Sandwich Slab Bridges (단순지지된 샌드위치 슬래브교량의 파괴시 치수효과)

  • Han, Bong-Koo;Kim, Duck-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.83-90
    • /
    • 2010
  • Composite materials can be used economically and efficiently in civil engineering applications when standards and procedure for analysis, design, construction and quality control are to be established. Bridge systems, including the girders and cross-beams, and concrete decks behave as the specially orthotropic plates. For such systems with sections, boundary conditions other than Navier solution types, it is very difficult to obtain its analytical solution. To design the bridge made by the composite materials, cross-section was used as the form-core shape for economical reason and finite difference method was used for output of the stress value. The Tsai-Wu failure criterion for stress space is used. In this paper, the rate of tensile strength reduction due to increased size was considered. And also numerical study is made for these cases.

Evaluation of Uplift Forces Acting on Fastening Systems at the Bridge Deck End Considering Nonlinear Behaviors of the Fastening Systems (체결장치 비선형 거동을 고려한 교량 단부에서의 체결장치 압상력 평가)

  • Yang, Sin Chu;Kim, Hak Hyung;Kong, Jung Sik
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.521-528
    • /
    • 2017
  • In this study, vertical loading tests were conducted to investigate the nonlinear behaviors of the fastening systems that have generally been used in the concrete track of domestic railway lines. Nonlinear load-displacement curve models were derived based on the test results. The uplift forces generated in the fastening systems were evaluated by applying the derived nonlinear models as well as the existing linear models. The influence of the factors on the maximum uplift force of the fastening system was analyzed through a parameter study on the distance between neighboring sleepers, the horizontal distance between the center of the bearing and the nearest fastening system from the deck end, and the height of the bridge girder. From the evaluation results it is known that, for economical track and bridge design, due to deck end deformation, it is necessary to consider the nonlinear behavior of the fastening system in the calculation of the uplift force of the fastening systems.

Dynamic Behavior of the Prestressed Composite Girder by Modal Tests and Moving Train Analysis (프리스트레스트 강합성 거더의 모달테스트 및 이동 열차하중 해석에 의한 동적거동)

  • Kim, Sung Il;Lee, Pil Goo;Lee, Jung Whee;Yeo, In Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.793-804
    • /
    • 2006
  • Various PSC and steel-concrete composite railway bridges are being developed for short-medium spans with structural and economic efficiency. According to the design concept, the prestressed composite girder bridge has the advantages of being lightweight and having low girder depth, with the capacity for long spans. However, the dynamic behavior under a passing train is one of the critical issues concerning these railway bridges designed with more flexibility. Therefore, it is very important to evaluate the modal parameters before performing dynamic analyses. In this paper, real-scale prestressed composite girders were fabricated as a test model and modal testing was carried out to evaluate modal parameters including natural frequency and modal damping ratio. During the modal testing, a digitally controlled vibration exciter as well as an impact hammer was applied to obtain frequency-response functions, and the modal parameters were also evaluated after the fracture of test models. With application of reliable properties from modal tests, the estimation of dynamic performances of prestressed composite girder railway bridges can be obtained from various parametric studies on dynamic behavior under the passage of a moving train.

The State Attribute and Grade Influence Structure for the RC Bridge Deck Slabs by Information Entropy (정보 엔트로피에 의한 RC 교량 상판의 상태속성 및 등급 영향 구조 분석)

  • Hwang, Jin-Ha;Park, Jong-Hoi;An, Seoung-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.61-71
    • /
    • 2010
  • The attributes related to the health condition of RC deck slabs are analyzed to help us identify and rate the safety level of the bridges in this study. According to the related reports the state assessment for the outward aspects of bridges is the important and critical part for rating the overall structural safety. In this respect, the careful identification for the various state attributes make the field inspection and structural diagnosis very effective. This study analyzes the influence of the state attributes on evaluation classes and the relationship of them by the inductive reasoning, which raise the understanding and performance for evaluation work, and support the logical approach for the state assessment. ID3 algorithm applied to the case set which is constructed from the field reports indicates the main attributes and the precedence governing the assessment, and derives the decision hierarchy for the state assessment.

Objective Reduction Approach for Efficient Decision Making of Multi-Objective Optimum Service Life Management (다목적 최적화 기반 구조물 수명관리의 효율적 의사결정을 위한 목적감소 기법의 적용)

  • Kim, Sunyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.254-260
    • /
    • 2017
  • The service life of civil infrastructure needs to be maintained or extended through appropriate inspections and maintenance planning, which results from the optimization process. A multi-objective optimization process can lead to more rational and flexible trade-off solutions rather than a single-objective optimization for the service life management of civil infrastructure. Recent investigations on the service life management of civil infrastructure were generally based on minimizing the life-cycle cost analysis and maximizing the structural performance. Various objectives for service life management have been developed using novel probabilistic concepts and methods over the last few decades. On the other hand, an increase in the number of objectives in a multi-objective optimization problem can lead to difficulties in computational efficiency, visualization, and decision making. These difficulties can be overcome using the objective reduction approach to identify the redundant and essential objectives. As a result, the efficiency in computational efforts, visualization, and decision making can be improved. In this paper, the multi-objective optimization using the objective reduction approach was applied to the service life management of concrete bridges. The results showed that four initial objectives can be reduced by two objectives for the optimal service life management.

Crack Detection on Bridge Deck Using Generative Adversarial Networks and Deep Learning (적대적 생성 신경망과 딥러닝을 이용한 교량 상판의 균열 감지)

  • Ji, Bongjun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.303-310
    • /
    • 2021
  • Cracks in bridges are important factors that indicate the condition of bridges and should be monitored periodically. However, a visual inspection conducted by a human expert has problems in cost, time, and reliability. Therefore, in recent years, researches to apply a deep learning model are started to be conducted. Deep learning requires sufficient data on the situations to be predicted, but bridge crack data is relatively difficult to obtain. In particular, it is difficult to collect a large amount of crack data in a specific situation because the shape of bridge cracks may vary depending on the bridge's design, location, and construction method. This study developed a crack detection model that generates and trains insufficient crack data through a Generative Adversarial Network. GAN successfully generated data statistically similar to the given crack data, and accordingly, crack detection was possible with about 3% higher accuracy when using the generated image than when the generated image was not used. This approach is expected to effectively improve the performance of the detection model as it is applied when crack detection on bridges is required, though there is not enough data, also when there is relatively little or much data f or one class.