• Title/Summary/Keyword: 코팅판

Search Result 124, Processing Time 0.025 seconds

A Study on Protection of Stainless Steel Substrate against Corrosion in Molten Carbonate by Formation of Aluminum Diffusive Layer Using a Slurry Coating Method (슬러리 코팅법에 의한 스테인레스 스틸 표면에서의 알루미늄 확산막 제조 및 용융탄산염 내에서의 내식 특성 연구)

  • Nam S. W.;Hwang E. R.;Magtanyuk A. P.;Hong M. Z.;Lim T. H.;Oh I. -H.;Hong S. -A.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.136-140
    • /
    • 2000
  • A stainless steel separator for a molten carbonate fuel cell is usually coated with aluminum diffusive layer to protect its surface against corrosion by the molten carbonate at high temperatures. In this study, a relatively simple method was devised to form the aluminum diffusive layer on a stainless steel substrate. Slurry coating of aluminum on the substrate followed by heat treatment under reducing atmosphere at $650\~800^{\circ}C$ produced the aluminum diffusive layer of $25\~80{\mu}m$ thickness. The thickness of aluminum diffusive layer increased with increasing the temperature or duration of the heat-treatment. The corrosion resistance against molten carbonate under oxidizing atmosphere was significantly improved by aluminum diffusive layer formed by the sluny painting and heat treatment method. Moreover, the sample prepared in this study showed corrosion behavior similar to the sample with aluminum diffusive layer prepared by ion vapor deposition and heat treatment.

DR (Digital Radiography) 적용을 위한 Biology 초음파 특수용매를 이용한 $PbI_2$ 합성법

  • Kim, Seong-Heon;Yun, Min-Seok;O, Gyeong-Min;Kim, Yeong-Bin;Lee, Sang-Hun;Jo, Gyu-Seok;Park, Hye-Jin;Nam, Sang-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.146-146
    • /
    • 2009
  • 최근에 광도전체와 형광체를 기반으로 평판형 디지털 방사선 검출기의 상업적 발전가능성에 많은 관심을 가지고 있다. 본 연구는 기존의 직접변환방식에 널리 사용되었던 비정질 셀레늄 (amorphous selenium) 기반의 디지털 방사선 검출기보다 높은 전기적신호 및 동작특성을 가지는 물질층을 제작하기 위해 High Purity (99.99%)의 상용화된 $PbI_2$를 특수용매에 담가두었다가 약 1시간동안 Biology 초음파 처리한 후 농축기를 사용하여 건조된 $PbI_2$를 3Roll-milling을 사용하여 미세크기의 Powder를 얻어내었다. 합성된 $PbI_2$ Powder를 PIB(Particle-in-Binder)법을 이용하여 전도성을 가진 ITO(Indium-tin-oxide)코팅된 유리판에 제작된 필름의 상부에 Magnetron sputtering system 을 사용하여 전극을 $1cm{\times}1cm$의 크기로 증착하였다. I-V 테스트를 통하여 X선 조사시 $PbI_2$필름의 Sensitivity, Dark current, SNR(signal-to-noise ratio)을 측정하여 필름의 전기적 검출 특성을 정량적으로 평가하였고 SEM(scanning electron microscope)을 통하여 입자의 크기를 관찰하였다.

  • PDF

Design of a Reflector Mirror for Infrared Camera in the High Magnetic Field of Power System (고자장 수·변전 설비에서의 적외선 카메라용 반사경 설계)

  • Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.255-260
    • /
    • 2014
  • Recently infrared cameras have been widely used to diagnosis degradation status of the power substitution system. At the place of high magnetic field, however, electronic parts of infrared camera take a place problem that is not reasonable working due to high magnetic field. To solve this problem, we may generally use reflector, it has a problem that the performance of reflection degrade caused by flexure of the reflector. In this paper, in order to overcome these problem, technique of design for reflector is proposed to reduce error and to increase measurement efficiency. The reflector is made by coating using aluminum on the acrylic sheet.

Solution growth of polycrystalline silicon on Al-Si coated borosilicate and quartz glass substrates for low cost solar cell application (저가태양전지에 응용을 위한 용액성장법에 의한 Al-Si층이 코팅된 유리기판상의 다결정 실리콘 박막성장에 관한 연구)

  • Lee, S.H.;Queisser, H.J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.238-244
    • /
    • 1994
  • We investigated solution growth of silicon on borosilicate and quartz glass substrates in the temperature range of $800^{\circ}C~520^{\circ}C$. A thin Al-Si layer evaporated onto the substrate serves to improve the wetting between the substrate and the Al/Ga solvent. Nucleation takes place by a reaction of Al with $SiO_2$ from the substrate. We obtained silicon deposits with a grain size up to a few 100 $\mu\textrm{m}$. There was a perferential (111) orientation for the case of quartz glass substrates while there is a strong contribution of other orientations for the deposition of Si on borosilicate glass substrates.

  • PDF

Effects of Thickness and Defects of DLC Coating Layer on Corrosion Resistance of Metallic Bipolar Plates of PEMFCs (PEMFC 금속분리판의 내식성에 미치는 DLC 코팅층의 두께 및 결함의 영향)

  • Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.235-245
    • /
    • 2024
  • DLC coatings have been widely applied in industrial fields that require high corrosion resistance due to their excellent mechanical characteristics and chemical stability. In this research, effects of DLC coating thickness and defects on corrosion resistance were investigated for application of metallic bipolar plates in polymer membrane electrolyte fuel cells (PEMFCs). Results revealed that a DLC coating thickness of 0.7 ㎛ could lead to a defect size reduction of about 75.9% compared to that of 0.3 ㎛.As a result of potentiodynamic polarization experiments, the current density under a potential of 0.6 V was measured to be less than 1 ㎂/cm2,which was an excellent value. Inparticular, the delamination ratio and the decrease rate of maximum pitting depth were up to 84.8% and 63.3%, respectively, with an increase in the DLC coating thickness. These results demonstrate that DLC coating thickness and defects are factors that can affect corrosion resistance of DLC coating and its substrate.

Development of Surface Coating Technology fey Metallic Bipolar Plate in PEMFC : I. Study on Surface and Corrosion Properties (PEMFCB금속분리판 코팅 기술 개발 : I. 표면 및 부식 특성 평가)

  • Chung, Kyeong-Woo;Kim, Se-Yung;Yang, Yoo-Chang;Ahn, Seung-Gyun;Jeon, Yoo-Taek;Na, Sang-Mook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.348-351
    • /
    • 2006
  • Bipolar plate, which forms about 50% of the stack cost, is an important core part with polymer electrolyte membrane in PEMFC. Bipolar plates have been commonly fabricated from graphite meterial having high electrical conductivity and corrosion resistance. Lately, many researchers have concentrated their efforts on the development of metallic bipolar plate and stainless steel has been considered as a potential material for metallic bipolar plate because of its high strength, chemical stability, low gas permeability and applicability to mass production. However, it has been reported that its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions and an increase in contact resistance by the growth of passive film therefore, its corrosion resistance as well as contact resistance must be improved for bipolar plate application. In this work, several types of coating were applied to 316L and their electrical conductivity and corrosion resistance were evaluated In the simulated PEMFC environment. Application of coating gave rise to low interfacial contact resistances below $19m{\Omega}cm^2$ under the compress force of $150N/cm^2$. It also made the corrosion potential to shift in the posit ive direct ion by 0.3V or above and decreased the corrosion current from ca. $9{\mu}A/cm^2$ to ca. $0.5{\mu}A/cm^2$ in the mixed solution of $0.1N\;N_2SO_4$ and 2ppm HF A coat ing layer under potentiostatic control of 0.6V and $0.75V_{SCE}$ for 500 hours or longer showed some instabilities, however, no significant change in coat Ing layer were observed from Impedance data. In addition, the corrosion current maintained less than $1{\mu}A/cm^2$ for most of time for potentiostatic tests. It indicates that high electrical conductivity and corrosion resistance can be obtained by application of coatings in the present work.

  • PDF

Titania Nanotube-based Dye-sensitized Solar Cells (티타니아 나노튜브를 이용한 염료감응 태양전지)

  • Kim, Taehyun;Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.447-452
    • /
    • 2018
  • Titanium nanotubes (TNT) of various lengths ranging from $0.34^{\circ}C$ to a maximum of $8.9^{\circ}C$ were prepared by anodizing a titanium metal sheet in an electrolyte containing fluorine ion ($F^-$) of HF, NaF and $NH_4F$. When TNT prepared by anodizing was calcined at $450^{\circ}C$, anatase crystals with photo activity were formed. The TNT-based dye-sensitized solar cell (DSSC) showed a maximum conversion efficiency of 4.71% when the TNT length was $2.5{\mu}m$. This value was about 18% higher than photo conversion efficiency of the FTO-based DSSC coated with titania paste. And the short circuit current density ($J_{sc}$) of the TNT-DSSC was $9.74mA/cm^2$, which was about 35% higher than the $7.19mA/cm^2$ of FTO-DSSC. The reason for the higher conversion efficiency of TNT-DSSC solar cells is that photoelectrons generated from dyes are rapidly transferred to the electrode surface through TNT, and the recombination of photoelectrons and dyes is suppressed.

Comparison of Corrosion Behavior of CrN Coated SUS316L with Different Layer Structure for Polymer Electrode Membrane Fuel Cell Bipolar Plate (CrN 코팅구조에 따른 Polymer Electrode Membrane Fuel Cell 금속분리판의 부식특성 비교)

  • Paik, Jung-Ho;Han, Won-Kyu;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.187-193
    • /
    • 2010
  • Chromium nitride (CrN) samples with two different layer structures (multilayer and single layer) were coated on bipolar plates of polymer electrolyte membrane fuel cells (PEMFC) using the reactive sputtering method. The effects with respect to layer structure on corrosion resistance and overall cell performance were investigated. A continuous and thin chromium nitride layer ($Cr_{0.48}\;N_{0.52}$) was formed on the surface of the SUS 316L when the nitrogen flow rate was 10 sccm. The electrochemical stability of the coated layers was examined using the potentiodynamic and potentiostatic methods in the simulated corrosive circumstances of the PEMFC under $80^{\circ}C$. Interfacial contact resistance (ICR) between the CrN coated sample and the gas diffusion layer was measured by using Wang's method. A single cell performance test was also conducted. The test results showed that CrN coated SUS316L with multilayer structure had excellent corrosion resistance compared to single layer structures and single cell performance results with $25\;cm^2$ in effective area also showed the same tendency. The difference of the electrochemical properties between the single and multilayer samples was attributed to the Cr interlayer layer, which improved the corrosion resistance. Because the coating layer was damaged by pinholes, the Cr layer prevented the penetration of corrosive media into the substrate. Therefore, the CrN with a multilayer structure is an effective coating method to increase the corrosion resistance and to decrease the ICR for metallic bipolar plates in PEMFC.

3, 4성분계 DSA 전극의 제조와 성능 평가

  • Park, Yeong-Sik;Kim, Dong-Seok
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.482-487
    • /
    • 2008
  • 성능이 우수한 다성분계 전극을 개발하기 위하여 Ru를 주 전극성분으로 Pt, Sn, Sb 및 Gd를 보조 전극성분으로 하여 3, 4성분계 전극의 성능과 산화제 생성량 및 전극 표면 분석을 행하여 다음의 결과를 얻었다. 1. 2분 동안 단위 W당 제거된 RhB 농토는 Ru:Sn:Sb=9:1:1 > Ru:Pt:Gd=5:5:1 > Ru:Sn=9:1 > Ru:Sn:Gd=9:1:1 > Ru:Sb:Gd=9:1:1로 나타났다. Ru:Sn:Sb=9:1.1 전극에서 발생하는 free Cl, ClO$_2$ 및 H$_2$O$_2$농도가 다른 전극보다 높은 것으로 나타나 산화제 생성경향과 RhB 분해율과는 상관관계가 있는 것으로 사료되었다. 4성분계 전극 중에서 Ru:Sn:Sb:Gd 전극의 성능이 가장 우수한 것으로 나타났으나 3성분계 전극인 Ru:Sn:Sb=9:1.1 전극보다 성능이 떨어지는 것으로 나타났다. Ru:Sn:Sb=9:1:1 전극에서 생성되는 산화제 농도가 다른 두 종류의 산화제 농도보다 높은 것으로 나타났고 4성분 전극의 경우 Ru:Sn:Sb:Gd 전극의 산화제 농도가 Ru:Sn:Sb:Gd 전극이 높거나 유사한 경우로 나타나 산화제 생성 경향과 RhB분해 능과는 상관관계가 있는 것으로 나타났다. 초기 RhB 분해 속도가 높은 전극의 COD 제거율도 높은 것으로 나타났다. OH 라디칼은 발생하지 않지만 염소계 산화제 농도가 높고 RhB제거율이 높아 Ru를 주 성분으로 한 전극의 RhB분해는 주로 간접 산화작용에 의한 것이며, 개발된 3, 4성분계 산화물 전극은 간접 산화용 전극임을 알 수 있었다. 에칭을 하기 전의 Ti판은 표면이 매끄러운 것으로 나타났으며, 35% 염산으로 에칭한 후의 Ti메쉬는 매우 거친 표면조직을 가지는 것을 관찰할 수 있었다. Ru:Sn:Sb=9:1:1 전극과 Ru:Sn:Sb:Gd 전극의 SEM 사진을 관찰한 결과 두 전극 모두 전극 물질이 균일하게 도포되어 있었으며, 두 전극 모두 열소성을 통해 전극 성분을 코팅할 때 발생하는 "mud crack"이 발생한 것이 관찰되었다 EDX 분석에서 Cl이 관찰되었는데, 전극 성분의 불완전 산화로 인한 비양론적 산화물 때문이며 이는 RhB 분해성능과 관련 있는 것으로 사료되었다.

  • PDF

Removal Characteristics of Single and Binary Vapors of Acetone, Toluene, and Methyl Mercaptan by Cylindrical UV Reactor Installed with TiO2-Coated Perforated Plane (TiO2를 코팅한 다공판을 설치한 원통형 UV 반응기에 의한 아세톤, 톨루엔, 메틸메르캅탄 단일 증기 및 2성분 혼합증기의 제거특성)

  • Jeon, Jin-Woo;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.3
    • /
    • pp.317-322
    • /
    • 2015
  • The photocatalytic decomposition characteristics of toluene, acetone, and methyl mercaptan (MM) by UV reactor installed with $TiO_2$-coated perforated plane were studied. The removal efficiency of single toluene, acetone, and MM vapor was increased with increasing oxygen concentration, but decreased with increasing inlet concentration. Elimination capacity of single toluene, acetone, and MM vapor was obtained to be $628g/m^3{\cdot}day$, $1,041g/m^3{\cdot}day$, and $2,158g/m^3{\cdot}day$, respectively. Also, the photocatalytic decomposition of binary vapor consisted of toluene and acetone, toluene and MM, acetone and MM were observed. Elimination capacity of toluene mixed with acetone, toluene mixed with MM, acetone mixed with toluene, acetone mixed with MM, MM mixed with toluene, and MM mixed with acetone was $327g/m^3{\cdot}day$, $512g/m^3{\cdot}day$, $128g/m^3{\cdot}day$, $266g/m^3{\cdot}day$, $785g/m^3{\cdot}day$ and $883g/m^3{\cdot}day$, respectively. The inhibitory effect of acetone was higher than MM in photocatalytic decomposition of toluene, the inhibitory effect of toluene was higher than MM photocatalytic decomposition of acetone, and the inhibitory effect of toluene was higher than acetone in photocatalytic decomposition of MM.