• Title/Summary/Keyword: 코튼

Search Result 13, Processing Time 0.029 seconds

Physical Properties of Polyester, Tencel and Cotton MVS Blended Yarns with Yarn counts and Blend Ratio (PET, Tencel, Cotton MVS 혼방사의 섬도와 혼용률에 따른 물성 특성)

  • Sa, A-Na;Lee, Jung Soon
    • Fashion & Textile Research Journal
    • /
    • v.17 no.2
    • /
    • pp.287-294
    • /
    • 2015
  • This study investigates the physical properties of Murata Vortex Spinning (MVS) blended yarn with yarn count(20's, 30's, 40's) and blend ratio(Polyester 100, Polyester70:Cotton30, Polyester50:Cotton50, Polyester30:Cotton70, and Polyester50:Tencel40:Cotton10). This study evaluated tenacity, elongation, bending rigidity, bending hysteresis, hairiness coefficient, irregularity and twist number. The structure of MVS blended yarn influenced stress, strain, bending rigidity, bending hysteresis and the hairiness coefficient of MVS blended yarn decreased as the yarn count increased. MVS blended yarn consists of core and sheath. The core of MVS blended yarn is composed of a parallel fiber with a wrapping fiber that covers thecore fiber. This special structure of the MVS blended yarn effects the physical properties of the yarn; in addition, the mechanical properties of the component fibers influenced the stress, strain, bending rigidity, bending hysteresis and hairiness coefficient of MVS blended yarn with the blend ratio. Polyester decreases and cotton increases resulted in decreased physical properties. A similar polyester content increased the tencel and physical properties. Appropriate physical properties and a variety of touch expression can be realized through a correct blend ratio.

The Physical Property of Knitted Fabrics for High Sensible Garment according to the Spinning Method using Organic Cotton (오가닉 코튼 원사제조 방법에 따른 고감성 의류용 편성물의 물리적 특성)

  • Kim, Hyun-Ah;Kim, Hyun-Chel
    • Fashion & Textile Research Journal
    • /
    • v.15 no.4
    • /
    • pp.606-612
    • /
    • 2013
  • This paper investigates the physical properties of organic cotton staple yarns manufactured by ring and siro spinning methods as well as analyzes the physical properties of fabric specimens knitted with staple yarns made by these two methods. The breaking stress and evenness of organic ring staple yarns showed the same level for the Japanese specimens as the control yarns; in addition, the same coefficient for the friction of the manufactured yarns and Japanese specimens was also shown. These results makes it possible to manufacture organic staple ring yarns from organic cotton fibers. The tenacity and breaking strain of siro staple yarns were higher than ring staple yarns. The evenness and friction coefficient of siro staple yarns were lower than the ring staple yarns; in addition, hairiness and the number of siro staple yarns was significantly lower than the ring staple yarns. The dimensional stabilities of knitted fabrics by 20 Ne and 30 Ne siro staple yarns were superior to ring staple yarns. The color fastnesses of washing, perspiration and abrasion of knitted fabrics by two spinning methods showed the same level as the 4.5 grade; however, the light fastness of knitted fabric by siro staple yarns was superior to ring staple yarns. It was shown that the siro spinning method (using eco-friendly organic cotton fibers) was applicable to a high sensible knitted garment that overcame drawbacks of organic fibers related to shrinkable properties after washing and low color fastness to light.

Bedding Fabric Performance Using Polyester, Tencel and Cotton MVS Blended Spun Yarns (PET, Tencel, Cotton MVS 혼방사로 제직된 침구용 직물의 성능평가)

  • Sa, A-Na;Lee, Jung Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • This study evaluated the performance of bedding fabrics consisting of warp (150d/144f, polyester) and weft (polyester, Tencel and cotton MVS blended spun yarn) with blend ratio of weft. We measured electrostatic propensity, moisture properties, pilling properties and mechanical properties of the fabrics for this study. F-P fabric showed outstanding moisture properties and pilling properties. However, tensile properties and electrostatic propensity were relatively inferior to other characteristic values. Significant static electricity may make F-P fabric uncomfortable. F-P7C3 fabric showed outstanding moisture properties and pilling properties. Static electricity may make F-P7C3 fabric uncomfortable; in addition, F-P5C5 fabric showed outstanding moisture properties and pilling properties. Rough and stiff hand feel were expected to increase because tensile properties decreased and surface properties increased. F-C fabric showed outstanding pilling properties and electrostatic propensity. However, it showed inferior moisture control properties. F-P5T4C1 fabric showed outstanding moisture properties, pilling properties and electrostatic propensity. Several properties are outstanding; however, the hand feels are very rough and stiff from bending. The water evaporation and static electricity increased with increasing polyester content. As the content of cotton increased, tensile properties were improved. However, water evaporation and static electricity decreased. The addition of Tencel increased the thickness and compression energy so that it exhibited a soft characteristic upon compression and an excellent moisture control properties, but the surface became somewhat coarse.