• Title/Summary/Keyword: 코어/쉘 복합와이어

Search Result 4, Processing Time 0.013 seconds

Magneto-impedance and Magnetic Relaxation in Electrodeposited Cu/Ni80Fe20 Core/Shell Composite Wire (전기도금 된 Cu/Ni80Fe20 코어/쉘 복합 와이어에서 자기임피던스 및 자기완화)

  • Yoon, Seok Soo;Cho, Seong Eon;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • The model for the magneto-impedance of composite wires composed of highly conductive nonmagnetic metal core and soft magnetic shell was derived based on the Maxwell's equations. The Cu($100{\mu}m$ diameter)/$Ni_{80}Fe_{20}$($15{\mu}m$ thickness) core/shell composite wire was fabricated by electrodeposition. The impedance spectra for the $Cu/Ni_{80}Fe_{20}$ core/shell composite wire were measured in the frequency range of 10 kHz~10 MHz under longitudinal dc magnetic field in 0 Oe~200 Oe. The spectra of complex permeability in circumferential direction were extracted from the impedance spectra by using the derived model. The extracted spectra of complex permeability showed relaxation-type dispersion which is well curve-fitted with Debye equation with single relaxation frequency. By analyzing the magnetic field dependence of the complex permeability spectra, it has been verified that the composite wire has magnetic anisotropy in longitudinal direction and the origin of the single relaxation process is the magnetization rotation in circumferential direction.

The Enhanced Off-Diagonal Magneto-Impedance Effect in Cu/Ni80Fe20 Core-Shell Composite Wires Fabricated by Electrodeposition under Torsional Strain (비틀림 스트레인 하에서 전기도금으로 만든 Cu 코어/Ni80Fe20 쉘 복합 와이어에서 비대각 자기임피던스(Off-diagonal Magneto-Impedance) 효과의 증대)

  • Kim, Dong Young;Yoon, Seok Soo;Lee, Sang Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.135-139
    • /
    • 2017
  • The magneto-impedance effect (MI effect) has been investigated in metal core/soft magnetic shell composite wires fabricated by electrodeposition of $Ni_{80}Fe_{20}$ on Cu wire (diameter $190{\mu}m$). The diagonal impedances $Z_{zz}$ and $Z_{{\theta}{\theta}}$ in cylindrical coordinate showed strong MI effect for the magnetic field applied along z-axis, while the off-diagonal impedance $Z_{{\theta}z}$ showed very weak MI effect. We have tried to develop the Cu $core/Ni_{80}Fe_{20}$ shell composite wire having strong MI effect in off-diagonal impedance by electrodeposion under torsional strain. The core/shell composite wire electrodeposited under torsional angles above $270^{\circ}$ showed significantly enhanced MI effect in the off-diagonal impedance. The maximum MI effect was observed in the composite wire electrodeposited under torsional angle of $360^{\circ}$. The developed method to enhance off-diagonal MI effect is expected to increase the applicability of the core/shell composite wire to magnetic sensor material.

Diagonal Magneto-impedance in Cu/Ni80Fe20 Core-Shell Composite Wire (Cu/Ni80Fe20 코어/쉘 복합 와이어에서 대각(Diagnonal) 자기임피던스)

  • Cho, Seong Eon;Goo, Tae Jun;Kim, Dong Young;Yoon, Seok Soo;Lee, Sang Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.129-137
    • /
    • 2015
  • The Cu(radius ra = $95{\mu}m$)/$Ni_{80}Fe_{20}$(outer radius $r_b$ = $120{\mu}m$) core/shell composite wire is fabricated by electrodeposition. The two diagonal components of impedance tensor for the Cu/$Ni_{80}Fe_{20}$ core/shell composite wire in cylindrical coordinates, $Z_{zz}$ and $Z_{{\theta}{\theta}}$, are measured as a function of frequency in 10 kHz~10 MHz and external static magnetic field in 0 Oe~200 Oe. The equations expressing the diagonal $Z_{zz}$ and $Z_{{\theta}{\theta}}$ in terms of diagonal components of complex permeability tensor, ${\mu}^*_{zz}$ and ${\mu}^*_{{\theta}{\theta}}$, are derived from Maxwell's equations. The real and imaginary parts of ${\mu}^*_{zz}$(f) and ${\mu}^*_{{\theta}{\theta}}$(f) spectra are extracted from the measured $Z_{zz}$(f) and $Z_{{\theta}{\theta}}$(f) spectra, respectively. It is presened that the extraction of ${\mu}^*_{zz}$(f) and ${\mu}^*_{{\theta}{\theta}}$(f) spectra from the diagonal impedance spectra can be a versatile tool to investigate dymanic magnetization process in the core/shell composite wire.