• Title/Summary/Keyword: 코싸인 유사계수

Search Result 3, Processing Time 0.015 seconds

Hierarchic Document Clustering in OPAC (OPAC에서 자동분류 열람을 위한 계층 클러스터링 연구)

  • 노정순
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.1
    • /
    • pp.93-117
    • /
    • 2004
  • This study is to develop a hierarchic clustering model fur document classification and browsing in OPAC systems. Two automatic indexing techniques (with and without controlled terms), two term weighting methods (based on term frequency and binary weight), five similarity coefficients (Dice, Jaccard, Pearson, Cosine, and Squared Euclidean). and three hierarchic clustering algorithms (Between Average Linkage, Within Average Linkage, and Complete Linkage method) were tested on the document collection of 175 books and theses on library and information science. The best document clusters resulted from the Between Average Linkage or Complete Linkage method with Jaccard or Dice coefficient on the automatic indexing with controlled terms in binary vector. The clusters from Between Average Linkage with Jaccard has more likely decimal classification structure.

A Study on the Integration of Similar Sentences in Atomatic Summarizing of Document (자동초록 작성시에 발생하는 유사의미 문장요소들의 통합에 관한 연구)

  • Lee, Tae-Young
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.34 no.2
    • /
    • pp.87-115
    • /
    • 2000
  • The effects of the Case, Part of Speech, Word and Clause Location, Word Frequency etc. were studied in discriminating the similar sentences of the Korean text. Word Frequency was much related to the discrimination of similarity and Tilte word and Functional Clause were little, but the others were not. The cosine coefficient and Salton'similarity measurement are used to measure the similarity between sentences. The change of clauses between each sentence is also used to unify the similar sentences into a represenative sentence.

  • PDF

Investigating an Automatic Method in Summarizing a Video Speech Using User-Assigned Tags (이용자 태그를 활용한 비디오 스피치 요약의 자동 생성 연구)

  • Kim, Hyun-Hee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.46 no.1
    • /
    • pp.163-181
    • /
    • 2012
  • We investigated how useful video tags were in summarizing video speech and how valuable positional information was for speech summarization. Furthermore, we examined the similarity among sentences selected for a speech summary to reduce its redundancy. Based on such analysis results, we then designed and evaluated a method for automatically summarizing speech transcripts using a modified Maximum Marginal Relevance model. This model did not only reduce redundancy but it also enabled the use of social tags, title words, and sentence positional information. Finally, we compared the proposed method to the Extractor system in which key sentences of a video speech were chosen using the frequency and location information of speech content words. Results showed that the precision and recall rates of the proposed method were higher than those of the Extractor system, although there was no significant difference in the recall rates.