Focusing on the recently announced "KOSPI 200 ESG Index," this study intends to examine whether the "KOSPI 200 ESG Index" has any relevance to stock prices. Specifically, it was empirically analyzed whether companies included in the KOSPI 200 ESG index showed average abnormal return and cumulative average abnormal return of stock prices due to incorporation into the index. As for the research method, the case study was conducted using the return by the market model using the coefficient estimated by the OLS for the normal expected return. The study results are summarized as follows. First, the initial incorporation of a company into the KOSPI 200 ESG index showed significant positive(+) average abnormal return and cumulative average abnormal return. Second, the incorporation of a company into the KOSPI 200 ESG index showed significant positive(+) average abnormal return and cumulative average abnormal return. Through this study, it was confirmed that investors in the market are aware of ESG indicators as non-financial information, not just financial information. In addition, it can be said that the contribution of this study to the fact that investors perceive ESG index as information for investment. This study differs in that it uses the latest ESG index, but at the same time, it has limitations in that the study period is short and the study sample is limited.
This paper tests cross hedging performance of the KOSPI 200 stock index futures to hedge the downside risk of the KOSPI, KOSPI 200 and KOSDAQ50 spot market. For this purpose we introduce the minimum variance hedge model, bivariate GARCH(1,1) and EGARCH(1,1) model as hedge models. The main results are as follows; First, we find that the direct hedge performance of KOSPI 200 index futures is better than those of indirect hedge performance. second, in case or cross hedge performance the hedge effect of KOSPI 200 stock index futures market against KOSPI 200 stock index spot market is relatively better than those of KOSPI 200 index futures against KOSPI and KOSDAQ spot position. Third, for the out-sample, hedging effectiveness of the risk-minimization with constant hedge ratios is higher than those of the time varying bivariate GARCH(1,1) and EGARCH(1,1) model. In conclusion, investors are encouraged to use simple risk-minimization model rather than the time varying hedge models like GARCH and EGARCH model to hedge the position of the Korean stock index cash markets.
Journal of the Korean Data and Information Science Society
/
v.25
no.6
/
pp.1449-1466
/
2014
In this paper, we consider a hedge portfolio based on futures of underlying asset. A classical way to estimate a hedge ratio for a hedge portfolio of a spot and futures is a regression analysis. However, a regression analysis is not capable of reflecting long-run equilibrium between a spot and futures and volatility clustering in the conditional variance of financial time series. In order to overcome such defects, we analyzed KOSPI200 index and futures using VECM-CC-GARCH model and computed a hedge ratio from the estimated conditional covariance-variance matrix. In real data analysis, we compared a regression and VECM-CC-GARCH models in terms of hedge effectiveness based on variance, value at risk and expected shortfall of log-returns of hedge portfolio. The empirical results show that the multivariate GARCH models significantly outperform a regression analysis and improve hedging effectiveness in the period of high volatility.
This paper tests the relationship among returns, volatilities, contracts and open interests of KOSPI 200 futures markets with the various dynamic models such as granger-causality, impulse response, variance decomposition and ARMA(1, 1)-GJR-GARCH(1, 1)-M. The sample period is from July 7, 1998 to December 29, 2005. The main empirical results are as follows; First, both contract change and open interest change of KOSPI 200 futures market tend to lead the returns of that according to the results of granger-causality, impulse response and variance decomposition with VAR. These results are likely to support the KOSPI 200 futures market seems to be inefficient with rejecting the hypothesis 1. Second, we also find that the returns and volatilities of the KOSPI 200 futures market are effected by both contract change and open interest change of that due to the results of ARMA(1,1)-GJR-GARCH(1,1)-M. These results also reject the hypothesis 1 and 2 suggesting the evidences of inefficiency of the KOSPI 200 futures market. Third, the study shows the asymmetric information effects among the variables. In addition, we can find the feedback relationship between the contract change and open interest change of KOSPI 200 futures market.
Journal of the Korean Data and Information Science Society
/
v.24
no.2
/
pp.235-244
/
2013
In this study, we propose a new trading strategy by using a trading volume index in KOSPI200 futures market. Many studies have been conducted with respect to the relationship between volume and price, but none of them is clearly concluded. This study analyzes the economic usefulness of investment strategy, using volume index. This analysis shows that the trading volume is a preceding index. This paper contains two objectives. The first objective is to make an index using Correlated Volume Index (CVI) and second objective is to find an appropriate timing to buy or sell the Kospi200 future index. The results of this study proved the importance of the proposed model in KOSPI200 futures market, and it will help many investors to make the right investment decision.
Journal of Korea Society of Industrial Information Systems
/
v.22
no.6
/
pp.23-29
/
2017
Due to the success of Wealthfront, Betterment, etc., there is a growing interest in RoboAdvisor that is an automated asset allocation methodology globally. RoboAdvisor minimizes human involvement in managing assets, thereby reducing the costs of using services and eliminating human psychological factors. In this paper, we developed a predictive model for the KOSPI 200 Futures Index using deep learning, in order to replace the existing technical analysis technique. And the proposed model confirmed that When the KOSPI 200 Gift Index is small, it can be used to predict direction and price of index. In combination with the existing technical analysis, It is confirmed that the proposed models combining with existing technical analyses and can be applied to the RoboAdvisor Service in the future.
Journal of the Korean Data and Information Science Society
/
v.22
no.1
/
pp.37-47
/
2011
Stock price index option market has various investment strategies that have been developed. Specially, arbitrage strategies are very important to be efficient in option market. The purpose of this study is to improve profit using rough set and Box spread by using past option trading data. Option trading data was based on an actual stock exchange market tick data ranging from 2001 to 2006. Validation process was carried out by transferring the tick data into one-minute intervals. Box spread arbitrage strategies is low risk but low profit. It can be accomplished by back-testing of the existing strategy of the past data and by using rough set, which limit the time line of dealing. This study can make more stable profits with lower risk if control the strategy that can produces a higher profit module compared to that of the same level of risk.
Journal of the Korean Data and Information Science Society
/
v.20
no.6
/
pp.1061-1073
/
2009
Stock price index option investing is a scientific investment method and various index and investment strategies have been developed. The purpose of this study is to apply the variety of option investment strategies that have been introduced in the market and validate them using past option trading data. Option data was based on an actual stock exchange market tick data ranging from September 2001 to January 2007. Visual Basic is used to propose an option back-testing model. Validation process was carried out by transferring the tick data into ten-minute intervals and empirically analyzed. Furthermore, most option-related strategies have been applied to the model, and the usefulness of each strategies can be easily evaluated. As option investment has high leverage followed by high risks and profit, the optimal option investment strategy should be used according to the market condition at the time to make stable profit with minimum risk.
The stock market is constantly changing and sometimes a slump or a sudden rising in stocks happens without any special reason. So the stock market is recognized as a complex system and it is hard to predict the change on stock prices. In this paper we consider the stock market to a network consisting of stocks. We analyzed the dynamics of the Korean stock market network and evaluated the changing of the correlation between shares consisting of the time series data of 137 companies belong to KOSPI200. Our analysis shows that the stock prices tend to plummet when the correlation between stocks is very high. We propose a method for recommending the stock portfolio based on the analysis of the stock market network. To show the effectiveness of the recommended portfolio, we conducted the simulated stock investment and compared the recommended portfolio with the efficient portfolio proposed Markowitz. According to the experiment results, the rate of return of the portfolio is about 10.6% which is about 3.7% and 5.6% higher than the average rate of return of the efficient portfolio and KOSPI200 respectively.
Hidden Markov model (HMM) is a statistical model in which the system consists of two elements, hidden states and observable results. HMM has been actively used in various fields, especially for time series data in the financial sector, since it has a variety of mathematical structures. Based on the HMM theory, this research is intended to apply the domestic KOSPI200 stock index as well as the prediction of global stock indexes such as NIKKEI225, HSI, S&P500 and FTSE100. In addition, we would like to compare and examine the differences in results between the HMM and support vector regression (SVR), which is frequently used to predict the stock price, due to recent developments in the artificial intelligence sector.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.