• Title/Summary/Keyword: 코드벡터

Search Result 265, Processing Time 0.022 seconds

A hybrid intrusion detection system based on CBA and OCSVM for unknown threat detection (알려지지 않은 위협 탐지를 위한 CBA와 OCSVM 기반 하이브리드 침입 탐지 시스템)

  • Shin, Gun-Yoon;Kim, Dong-Wook;Yun, Jiyoung;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.27-35
    • /
    • 2021
  • With the development of the Internet, various IT technologies such as IoT, Cloud, etc. have been developed, and various systems have been built in countries and companies. Because these systems generate and share vast amounts of data, they needed a variety of systems that could detect threats to protect the critical data contained in the system, which has been actively studied to date. Typical techniques include anomaly detection and misuse detection, and these techniques detect threats that are known or exhibit behavior different from normal. However, as IT technology advances, so do technologies that threaten systems, and these methods of detection. Advanced Persistent Threat (APT) attacks national or companies systems to steal important information and perform attacks such as system down. These threats apply previously unknown malware and attack technologies. Therefore, in this paper, we propose a hybrid intrusion detection system that combines anomaly detection and misuse detection to detect unknown threats. Two detection techniques have been applied to enable the detection of known and unknown threats, and by applying machine learning, more accurate threat detection is possible. In misuse detection, we applied Classification based on Association Rule(CBA) to generate rules for known threats, and in anomaly detection, we used One-Class SVM(OCSVM) to detect unknown threats. Experiments show that unknown threat detection accuracy is about 94%, and we confirm that unknown threats can be detected.

Measuring Similarity of Android Applications Using Method Reference Frequency and Manifest Information (메소드 참조 빈도와 매니페스트 정보를 이용한 안드로이드 애플리케이션들의 유사도 측정)

  • Kim, Gyoosik;Hamedani, Masoud Reyhani;Cho, Seong-je;Kim, Seong Baeg
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.3
    • /
    • pp.15-25
    • /
    • 2017
  • As the value and importance of softwares are growing up, software theft and piracy become a much larger problem. To tackle this problem, it is highly required to provide an accurate method for detecting software theft and piracy. Especially, while software theft is relatively easy in the case of Android applications (apps), screening illegal apps has not been properly performed in Android markets. In this paper, we propose a method to effectively measure the similarity between Android apps for detecting software theft at the executable file level. Our proposed method extracts method reference frequency and manifest information through static analysis of executable Android apps as the main features for similarity measurement. Each app is represented as an n-dimensional vectors with the features, and then cosine similarity is utilized as the similarity measure. We demonstrate the effectiveness of our proposed method by evaluating its accuracy in comparison with typical source code-based similarity measurement methods. As a result of the experiments for the Android apps whose source file and executable file are available side by side, we found that our similarity degree measured at the executable file level is almost equivalent to the existing well-known similarity degree measured at the source file level.

A Study on Teaching the Method of Lagrange Multipliers in the Era of Digital Transformation (라그랑주 승수법의 교수·학습에 대한 소고: 라그랑주 승수법을 활용한 주성분 분석 사례)

  • Lee, Sang-Gu;Nam, Yun;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.65-84
    • /
    • 2023
  • The method of Lagrange multipliers, one of the most fundamental algorithms for solving equality constrained optimization problems, has been widely used in basic mathematics for artificial intelligence (AI), linear algebra, optimization theory, and control theory. This method is an important tool that connects calculus and linear algebra. It is actively used in artificial intelligence algorithms including principal component analysis (PCA). Therefore, it is desired that instructors motivate students who first encounter this method in college calculus. In this paper, we provide an integrated perspective for instructors to teach the method of Lagrange multipliers effectively. First, we provide visualization materials and Python-based code, helping to understand the principle of this method. Second, we give a full explanation on the relation between Lagrange multiplier and eigenvalues of a matrix. Third, we give the proof of the first-order optimality condition, which is a fundamental of the method of Lagrange multipliers, and briefly introduce the generalized version of it in optimization. Finally, we give an example of PCA analysis on a real data. These materials can be utilized in class for teaching of the method of Lagrange multipliers.

Development of a Testing Environment for Parallel Programs based on MSC Specifications (MSC 명세를 기반으로 한 병렬 프로그램 테스팅 환경의 개발)

  • Kim, Hyeon-Soo;Bae, Hyun-Seop;Chung, In-Sang;Kwon, Yong-Rae;Chung, Young-Sik;Lee, Byung-Sun;Lee, Dong-Gil
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.2
    • /
    • pp.135-149
    • /
    • 2000
  • Most of prior works on testing parallel programs have concentrated on how to guarantee the reproducibility by employing event traces exercised during executions of a program. Consequently, little work has been done to generate test cases, especially, from specifications produced from software development process. In this research work, we devise the techniques for deriving test cases automatically from the specifications written in Message Sequence Charts(MSCs) which are widely used in telecommunication areas and develop the testing environment for performing module testing of parallel programs with derived test cases. For deriving test cases from MSCs, we have to uncover the causality relations among events embedded implicitly in MSCs. For this, we devise the methods for adapting vector time stamping to MSCs, Then, valid event sequences, satisfying the causality relations, are generated and these are used as test cases. The generated test cases, written in TTCN, are translated into CHILL source codes, which interact with a target module to be tested and test the validity of behaviors of the module. Since the testing method developed in this research work extracts test cases from the MSC specifications produced front telecommunications software development process, it is not necessary to describe auxiliary specifications for testing. In audition adapting vector time stamping generates automatically the event sequences, the generated event sequences that are ones for whole system can be used for individual testing purpose.

  • PDF

A Hierarchical Cluster Tree Based Fast Searching Algorithm for Raman Spectroscopic Identification (계층 클러스터 트리 기반 라만 스펙트럼 식별 고속 검색 알고리즘)

  • Kim, Sun-Keum;Ko, Dae-Young;Park, Jun-Kyu;Park, Aa-Ron;Baek, Sung-June
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.562-569
    • /
    • 2019
  • Raman spectroscopy has been receiving increased attention as a standoff explosive detection technique. In addition, there is a growing need for a fast search method that can identify raman spectrum for measured chemical substances compared to known raman spectra in large database. By far the most simple and widely used method is to calculate and compare the Euclidean distance between the given spectrum and the spectra in a database. But it is non-trivial problem because of the inherent high dimensionality of the data. One of the most serious problems is the high computational complexity of searching for the closet spectra. To overcome this problem, we presented the MPS Sort with Sorted Variance+PDS method for the fast algorithm to search for the closet spectra in the last paper. the proposed algorithm uses two significant features of a vector, mean values and variance, to reject many unlikely spectra and save a great deal of computation time. In this paper, we present two new methods for the fast algorithm to search for the closet spectra. the PCA+PDS algorithm reduces the amount of computation by reducing the dimension of the data through PCA transformation with the same result as the distance calculation using the whole data. the Hierarchical Cluster Tree algorithm makes a binary hierarchical tree using PCA transformed spectra data. then it start searching from the clusters closest to the input spectrum and do not calculate many spectra that can not be candidates, which save a great deal of computation time. As the Experiment results, PCA+PDS shows about 60.06% performance improvement for the MPS Sort with Sorted Variance+PDS. also, Hierarchical Tree shows about 17.74% performance improvement for the PCA+PDS. The results obtained confirm the effectiveness of the proposed algorithm.