• 제목/요약/키워드: 켐벨선도

검색결과 7건 처리시간 0.025초

동 다이캐스팅 고속 유도전동기의 불평형 응답 해석 (Unbalance Response Analysis of Copper Die Casting High Speed Induction Motor)

  • 홍도관;정승욱;우병철;구대현;안찬우
    • 한국소음진동공학회논문집
    • /
    • 제22권7호
    • /
    • pp.642-649
    • /
    • 2012
  • This paper deals with a copper die casting induction motor which has several advantages of motor performance. The developed motor is used as spindle motor in machining center. The dynamic characteristic analysis of rotor is dealt with for precision machining. The critical speed of rotor considering rotation and gyroscopic effect should be above operating speed, 18,000 rpm, and have a 201 % sufficient separation margin. Also, the 3-D unbalance vibration response analysis is performed and enabled the prediction of the expected vibration amplitude by unbalance in high speed. The unbalance vibration responses of each position on the rotor are satisfied with allowable vibration displacement of API 611 standard according to balancing G grade(G 0.4, G 2.5, G 6.3). Copper die casting high speed induction motor is successfully developed and verified by experiment.

하드 디스크 드라이브 계의 진동해석 (Vibration Analysis of Hard Disk Drive System)

  • 임승철;곽병문;전상복
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1183-1192
    • /
    • 2000
  • This paper relates to the flexural vibration analysis of the hard disk drive (HDD) spindle systems by means of the finite element method. In contrast to previous researches, every system componebt is here analytically modeled taking into account its flexibility and also the centrifugal effect particularly for the disk. To prove the effectiveness and accuracy of the proposed method, commercial HDD spindle systems with two and three identical disks are chosen as examples. Then, their major flexural natural modes are computed employing only a small number of element meshes as the shaft rotaional speed is varied, and compared with the bumerical or experimental results.

원전 터빈 저압단 블레이드의 절손사고와 진동특성 (Natural Vibration and Failure Trouble in LP Stage Blades of Nuclear Power Turbine)

  • 구재량;이우광;조철환;김연환;강병연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1040-1043
    • /
    • 2006
  • Every mechanical system has a series of natural frequencies at which it will vibrate and to which it will respond if an external stimulus or excitation at this frequency is applied. Vibration is not of itself dangerous, and is always anticipated in an operating unit. However, if the frequency of operation is coincidental with one of the natural frequency of the blade system or the blade has a natural frequency near coincide with the exciting stimulus, then the amplitude of vibration of the blade may increase to the destructive damage can result. In this paper We investigated damage of blade when turbine operated.

  • PDF

고속 운전용 건식진공펌프 로터-베어링 시스템의 회전체동역학 해석 (Rotordynamic Analysis of a Dry Vacuum Pump Rotor-Bearing System for High-Speed Operation)

  • 이안성;이동환;김병옥
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.523-530
    • /
    • 2006
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modern semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element hearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through the results of its 3-D finite element model. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated determinately and indeterminately by considering the generalized forces of the gear action as veil as the rotor itself. Each resultant hearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, and unbalance responses under various unbalance locations. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.

  • PDF

산업용 원심분리기의 진동저감을 위한 로터다이나믹 해석 (A Rotordynamic Analysis of a Industrial Centrifuge for Vibration Reduction)

  • 김병옥;이안성
    • 한국소음진동공학회논문집
    • /
    • 제18권8호
    • /
    • pp.879-885
    • /
    • 2008
  • A rotordynamic analysis was performed with a decant-type centrifuge, which is a kind of industrial centrifuge. The system is composed of screw rotor, bowl rotor, driving motors, gear box, and support rolling element bearings. These rotors have a rated speed of 4300 rpm, and were modeled utilizing a rotordynamic FE method for analysis, which was verified through 3-D FE analysis. Design goals are to achieve wide separation margins of lateral critical speeds, and favorable unbalance responses of the rotor in the operating range. Then, a complex analysis rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds and mode shapes, whirl natural frequencies, and unbalance responses under various balance grade. As a result of analysis, the rotordynamic analysis performed by separating a screw rotor and bowl rotor may cause an error in predicting critical speed of entire system. Therefore, the rotordynamic analysis of a coupled rotor combining a screw and bowl rotor must be performed in order to more accurately estimate dynamic characteristics of the decanter-type centrifuge as presented in this paper. Also, rolling element bearings with suitable stiffness should be selected to keep enough separation margin. In addition, in establishing balance grade of a screw and bowl rotor, ISO G2.5 balance grade is more recommended than ISO G6.3, in particular balancing correction of a screw rotor based on ISO G2.5 grade is strongly recommended.

터보 냉동기의 변동 기어하중을 고려한 로터다이나믹 해석 Part II : 피동 고속 압축기 피니언-임펠러 로터-베어링 시스템 (Rotordynamic Analysis of a Turbo-Chiller with Varying Gear Loadings Part II : A Driven High-Speed Compressor Pinion-Impeller Rotor-Bearing System)

  • 이안성;정진희
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.1042-1049
    • /
    • 1999
  • In the Part I has been reported a rotordynamic analysis of the driving motor-bull gear rotor-bearing system of a turbo-chiller. In this study, Part II, a rotordynamic analysis is performed with the turbo-chiller compressor pinion-impeller rotor system supported on two fluid film bearings. The pinion-impeller rotor system is driven to a rated speed of 14,600 rpm through a speed-increasing pinion-bull gear. It is modeled utilizing the finite element method for analysis. As loadings on the bearings due to the gear action are significant in the system considered, each resultant bearing load is calculated statically by considering the generalized forces of the gear action as well as the rotor itself. The two support bearings, the generalized forces of the gear action as well as the rotor itself. The two support bearings, partial and 3-axial groove bearings, are designed to take their varying loads along with their varying load angles, and they are also analyzed to give their rotordynamic coefficients. Then, a complex rotordynamic analysis of the compressor pinion-impeller rotor-bearing system is carried out to evaluate its stability, whirl natural frequencies and mode shapes, and unbalance responses under various loading conditions. Results show that the bearings and entire rotor system are well designed regardless of operating conditions, i.e., loads and operating speeds.

  • PDF

고효율 복합형 진공펌프의 로터다이나믹 해석 (A Rotordynamics Analysis of High Efficiency and Hybrid Type Vacuum Pump)

  • 김병옥;이안성;노명근
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.967-975
    • /
    • 2007
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modern semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element bearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300 rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through 3-D FE analysis and experimental modal analysis. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated by considering the generalized forces of the gear action as well as the rotor itself. Each resultant bearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of lateral and torsional critical speeds, and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, unbalance responses under various unbalance locations, and torsional interference diagram. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.