• 제목/요약/키워드: 케이블 구동 유압 시스템

검색결과 2건 처리시간 0.014초

함상용 윈치 자제구동형 케이블 정렬 시스템 개발 (Development of a Self-Activated Cable Spooling System for Seaborne Winch)

  • 조상훈;박래석;우성우
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.15-21
    • /
    • 1997
  • In this paper, a self-activated cable spooling system for seaborne winch is developed . The system consists of a hydraulic servo driving unit and a cable position measurement mechanism. To realize the cable spooling system, it is carried out the mathematical modelling of the system and designed the proportional controller through the system aalysis and the simulation. The cable spooling system is tested and evaluated to validate the performance of the controller. The test results shows a good traceability of the cable spooling system under disturbance of cable tension.

  • PDF

로봇의 회전관절을 위한 케이블 로드를 갖는 유압 구동기 설계 및 구현 (Design and Implementation of the Cable Rod Hydraulic Actuator for Robotic Revolute Joints)

  • 김정영;박상덕;조정산
    • 한국정밀공학회지
    • /
    • 제33권9호
    • /
    • pp.723-730
    • /
    • 2016
  • This paper presents a cable-driven hydraulic actuator named Cable Rod Hydraulic Actuator (CRHA). The cable actuating system is attractive for designing a compact joint in robotic applications since it can be installed remotely from the joint. Recently, cable rods have been used in pneumatic area for inertia reduction. However, designing cable rods in hydraulics is challenging because it is difficult to achieve flexibility and endurance simultaneously under high pressure conditions. In this paper, the cable rod, which consists of a cable and jacket, is proposed to meet both requirements. To design the CRHA, we determined the design parameters, such as cylinder size, and selected the cable rod's material by friction and leakage test. Finally, comparisons experiments about step and frequency responses with conventional hydraulic actuators were performed to assess feasibility for robotic joints, and the results show that the proposed system has good bandwidth and fast response as robotic joints.