• Title/Summary/Keyword: 케미컬 탱커

Search Result 4, Processing Time 0.022 seconds

An Investigation on the Optimal Ship Size for Chemical Tankers by Main Shipping Routes (케미컬 탱커선 운항노선별 최적선형에 관한 연구)

  • Kim, Jae-Ho;Kim, Taek-Won;Woo, Su-Han
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.439-450
    • /
    • 2015
  • This study objects to find characteristics in chemical tanker markets and to determine optimal chemical tanker size using a total shipping cost in main trading route of asia chemical tankers .Precedent studies of determination of the optimal ship size and case studies about chemical tankers was carried out and tried to introduce a cost model which is applicable to chemical tanker. This study is dependant on numerical analysis and involves scenario analysis to minimize sensitivity of results. This analysis shows as follows. First, 12,000DWT tanker is an optimal size on the 'Far East-Middle East' services, 9,000DWT tanker is a most competitive on the 'Far East-South East Asia' services and 3,000DWT tanker is a most economic size on the 'Inner Far East' services at average market situation. Second, the bigger size of chemical tanker, the more competitive advantage the tanker will obtain when bunker fuel prices rise. Small size ship gets more competitive during bunker prices down. Third, market fluctuation of time charter rate for chemical tanker is less than 20% against its average time charter hire which means less volatile. And tanker's competitiveness per each size is remained mostly same when time charterer rates rise at same proportion. Fourth, bigger size chemical tankers have cost advantages when tanker's quantity of each part cargo increase. And small-sized tanks are more competitive when part cargo scales decrease. For the last, ship's port stay strongly influences on the determination of the optical tanker size. When vessel has shorter port stay, bigger-sized tanker will be more competitive and even can be competitive if applies in short voyage as well.

Forecasting Chemical Tanker Freight Rate with ANN

  • Lim, Sangseop;Kim, Seokhun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.113-118
    • /
    • 2021
  • In this paper, we propose an efficient dynamic workload balancing strategy which improves the performance of high-performance computing system. The key idea of this dynamic workload balancing strategy is to minimize execution time of each job and to maximize the system throughput by effectively using system resource such as CPU, memory. Also, this strategy dynamically allocates job by considering demanded memory size of executing job and workload status of each node. If an overload node occurs due to allocated job, the proposed scheme migrates job, executing in overload nodes, to another free nodes and reduces the waiting time and execution time of job by balancing workload of each node. Through simulation, we show that the proposed dynamic workload balancing strategy based on CPU, memory improves the performance of high-performance computing system compared to previous strategies.

The study on the Resistance Decrease Fore-Body Section development of Chemical tanker (케미컬 탱커선의 저항감소 선수선형 개발에 관한 연구)

  • Son, Chang-Ryeon;Sim, Sang-Mog;Park, Chung-Hwan;Lee, Kyung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.51-54
    • /
    • 2006
  • 최근 국내 중형급 조선소에서는 케미컬 탱커선을 주력선종으로 건조하고 있다. 하지만 선형개발 기술이 미비하여 저항감소 선형개발에 소홀하였다. 또한 기존 대형선박의 선형을 그대로 사용하기 때문에 추진효율이 떨어지고 많은 선수저항이 발생하여 선속에 큰 영향을 미치게 된다. 이에 본 연구에서는 CFD이론 해석을 통해 선형특성을 파악하고 저항감소 및 추진 효율 향상을 위해 실적선과 개발대상선의 모형시험을 통하여 선수저항 성능을 비교, 분석하여 저항감소 선수선형을 개발하였다.

  • PDF

A Study of Explosion Risk Assessment for Designation of Dangerous Goods Transshipment Pier at Ulsan Port (울산항 위험물 환적부두 지정을 위한 폭발 위험성 평가에 관한 연구)

  • Kang, Min-Kyoon;Lee, Yun-Sok;Ahn, Young-Joong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.109-116
    • /
    • 2021
  • The explosion of a chemical tanker ship during cargo transshipment via double-banking at Ulsan Port, resulted in major damage including fires involving nearby ships. As a follow-up measure to prevent the recurrence of similar accidents, the 'Safety Management of Dangerous Goods in Port' was established, and the designation of a transshipment pier for dangerous goods is required given the risk of explosion and the impact on major facilities in the port. This study evaluated the Fire & Explosion Index of major transshipment cargoes in Ulsan Port to design a transshipment pier based on the Explosion Risk Assessment. Based on the results of Fire & Explosion Index evaluation of styrene monomer and benzene, severe explosion risk was confirmed, and the exposure radius was calculated. Based on the results of the exposure radius, the risk range for each major pier was calculated, and 12 terminals were proposed as transshipment pier candidates considering port facilities, surrounding dangerous facilities, and residential aspects. Since the results of the study suggest transshipment piers based on the risk radius alone, maritime traffic safety, pier and mooring facilities, safety facilities and accessibility for emergency response should be considered comprehensively to designate actual transshipment piers.